简述各类机器学习问题

1.监督学习

监督学习,可以理解为通过学习已有数据特征和标签之间的关系,来预测新的数据特征所对应的标签。

1.1回归

在监督学习中,当标签可以取数据集中的任意数值时,我们将这个问题归为回归问题。

1.2分类

在监督学习中,如果标签只是取到一些有限的数值的话,我们将这个问题归为分类问题。

1.3搜索

从海量结果中,找到和用户输入最相关的一组有序的结果,并按照这个顺序呈现出来。

1.4推荐系统

将用户和他们可能喜欢的东西关联起来,并推送给这些用户。

1.5序列学习

输入之间是有关联的,通过一系列的输入,预测对应的输出结果。

2.无监督学习

只有数据,没有对应的标签的情况。

3.强化学习

数据来自于生产数据的环境,不管是监督学习,还是无监督学习,都是在数据脱离生产环境后的"离线学习"。而,强化学习是与环境实时交互的"在线学习"。

Reference:

1.《动手学习深度学习》

相关推荐
serve the people7 小时前
tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制 2
人工智能·python·tensorflow
donkey_19937 小时前
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
人工智能·深度学习·目标检测·计算机视觉·语义分割·实例分割
周名彥7 小时前
二十四芒星非硅基华夏原生AGI模型集群·全球发布声明(S∅-Omega级·纯念主权版)
人工智能·去中心化·知识图谱·量子计算·agi
周名彥7 小时前
1Ω1[特殊字符]⊗雙朕周名彥實際物理載體|二十四芒星物理集群载体群:超級數據中心·AGI·IPO·GUI·智能體工作流
人工智能·神经网络·知识图谱·量子计算·agi
Leinwin7 小时前
Microsoft 365 Copilot:更“懂你”的AI助手
人工智能·microsoft·copilot
后端小肥肠7 小时前
从图文到视频,如何用Coze跑通“小红书儿童绘本”的商业闭环?
人工智能·aigc·coze
飞睿科技7 小时前
ESP Audio Effects音频库迎来专业升级,v1.2.0 新增动态控制核心
人工智能·物联网·ffmpeg·智能家居·语音识别·乐鑫科技·esp
reddingtons7 小时前
PS 参考图像:线稿上色太慢?AI 3秒“喂”出精细厚涂
前端·人工智能·游戏·ui·aigc·游戏策划·游戏美术
西格电力科技7 小时前
光伏四可“可观”功能:光伏电站全景数字化的底层支撑技术
大数据·人工智能·架构·能源
VertGrow AI销冠7 小时前
2025年高口碑Ai获客系统软件TOP3推荐榜单
人工智能