简述各类机器学习问题

1.监督学习

监督学习,可以理解为通过学习已有数据特征和标签之间的关系,来预测新的数据特征所对应的标签。

1.1回归

在监督学习中,当标签可以取数据集中的任意数值时,我们将这个问题归为回归问题。

1.2分类

在监督学习中,如果标签只是取到一些有限的数值的话,我们将这个问题归为分类问题。

1.3搜索

从海量结果中,找到和用户输入最相关的一组有序的结果,并按照这个顺序呈现出来。

1.4推荐系统

将用户和他们可能喜欢的东西关联起来,并推送给这些用户。

1.5序列学习

输入之间是有关联的,通过一系列的输入,预测对应的输出结果。

2.无监督学习

只有数据,没有对应的标签的情况。

3.强化学习

数据来自于生产数据的环境,不管是监督学习,还是无监督学习,都是在数据脱离生产环境后的"离线学习"。而,强化学习是与环境实时交互的"在线学习"。

Reference:

1.《动手学习深度学习》

相关推荐
yzx9910133 小时前
RNN 在时序数据处理中的核心作用
人工智能·rnn·深度学习
一点.点4 小时前
李沐动手深度学习(pycharm中运行笔记)——10.多层感知机+从零实现+简介实现
人工智能·笔记·python·深度学习·pycharm
雾迟sec4 小时前
机器学习中的 K-均值聚类算法及其优缺点
人工智能·深度学习·机器学习·语言模型·语音识别
新加坡内哥谈技术4 小时前
Anthropic公司近日发布了两款新一代大型语言模型Claude Opus 4与Claude Sonnet 4
人工智能·语言模型·自然语言处理
硅谷秋水4 小时前
Real2Render2Real:无需动力学仿真或机器人硬件即可扩展机器人数据
人工智能·机器学习·计算机视觉·机器人
Ai墨芯1114 小时前
小样本机器学习再发力!2025再登Nature正刊
人工智能·机器学习
jndingxin4 小时前
OpenCV CUDA模块图像过滤------创建一个 Sobel 滤波器函数createSobelFilter()
人工智能·opencv·计算机视觉
那雨倾城4 小时前
使用 OpenCV 实现哈哈镜效果
人工智能·python·opencv·计算机视觉
LitchiCheng4 小时前
RISC-V 开发板 MUSE Pi Pro OpenCV结合Gstreamer实时显示CSI摄像头
人工智能·opencv·risc-v
平头某5 小时前
如何在 Django 中集成 MCP Server
人工智能·django·mcp