简述各类机器学习问题

1.监督学习

监督学习,可以理解为通过学习已有数据特征和标签之间的关系,来预测新的数据特征所对应的标签。

1.1回归

在监督学习中,当标签可以取数据集中的任意数值时,我们将这个问题归为回归问题。

1.2分类

在监督学习中,如果标签只是取到一些有限的数值的话,我们将这个问题归为分类问题。

1.3搜索

从海量结果中,找到和用户输入最相关的一组有序的结果,并按照这个顺序呈现出来。

1.4推荐系统

将用户和他们可能喜欢的东西关联起来,并推送给这些用户。

1.5序列学习

输入之间是有关联的,通过一系列的输入,预测对应的输出结果。

2.无监督学习

只有数据,没有对应的标签的情况。

3.强化学习

数据来自于生产数据的环境,不管是监督学习,还是无监督学习,都是在数据脱离生产环境后的"离线学习"。而,强化学习是与环境实时交互的"在线学习"。

Reference:

1.《动手学习深度学习》

相关推荐
TGITCIC1 小时前
能源AI天团:多智能体如何破解行业复杂任务
人工智能·能源·新能源·ai agent·大模型ai·ai能源·能源大模型
我爱计算机视觉2 小时前
ICCV 2025 | VideoOrion: 将视频中的物体动态编码进大语言模型,理解视频涨点10%以上!
人工智能·语言模型·自然语言处理
Lululaurel2 小时前
深度模型瘦身术:从100MB到5MB的工业级压缩实战
pytorch·python·机器学习·模型压缩·模型优化·边缘部署
WWZZ20253 小时前
ORB_SLAM2原理及代码解析:Tracking::CreateInitialMapMonocular() 函数
人工智能·opencv·算法·计算机视觉·机器人·slam·感知
WWZZ20253 小时前
ORB_SLAM2原理及代码解析:Tracking::MonocularInitialization() 函数
人工智能·opencv·算法·计算机视觉·机器人·感知·单目相机
eve杭4 小时前
解锁数据主权与极致性能:AI本地部署的全面指南
大数据·人工智能·5g·ai
数字时代全景窗4 小时前
商业航天与数字经济(一):从4G、5G得与失,看6G时代商业航天如何成为新经济引擎?
大数据·人工智能·5g
F_D_Z5 小时前
【一文理解】下采样与上采样区别
人工智能·深度学习·计算机视觉
CiLerLinux5 小时前
第三十五章 ESP32S3 摄像头实验
图像处理·人工智能·计算机视觉
진영_5 小时前
深度学习打卡第N8周:使用Word2vec实现文本分类
人工智能·深度学习·word2vec