简述各类机器学习问题

1.监督学习

监督学习,可以理解为通过学习已有数据特征和标签之间的关系,来预测新的数据特征所对应的标签。

1.1回归

在监督学习中,当标签可以取数据集中的任意数值时,我们将这个问题归为回归问题。

1.2分类

在监督学习中,如果标签只是取到一些有限的数值的话,我们将这个问题归为分类问题。

1.3搜索

从海量结果中,找到和用户输入最相关的一组有序的结果,并按照这个顺序呈现出来。

1.4推荐系统

将用户和他们可能喜欢的东西关联起来,并推送给这些用户。

1.5序列学习

输入之间是有关联的,通过一系列的输入,预测对应的输出结果。

2.无监督学习

只有数据,没有对应的标签的情况。

3.强化学习

数据来自于生产数据的环境,不管是监督学习,还是无监督学习,都是在数据脱离生产环境后的"离线学习"。而,强化学习是与环境实时交互的"在线学习"。

Reference:

1.《动手学习深度学习》

相关推荐
Liudef0628 分钟前
神经辐射场 (NeRF):重构三维世界的AI新视角
人工智能·重构
音视频牛哥1 小时前
打造实时AI视觉系统:OpenCV结合RTSP|RTMP播放器的工程落地方案
人工智能·opencv·计算机视觉·大牛直播sdk·rtsp播放器·rtmp播放器·android rtmp
归去_来兮2 小时前
生成式对抗网络(GAN)模型原理概述
人工智能·深度学习·生成对抗网络
在努力的韩小豪3 小时前
如何从0开始构建自己的第一个AI应用?(Prompt工程、Agent自定义、Tuning)
人工智能·python·llm·prompt·agent·ai应用·mcp
云卓SKYDROID3 小时前
无人机环境感知系统运行与技术难点!
人工智能·计算机视觉·目标跟踪·无人机·科普·高科技·云卓科技
网安INF3 小时前
深度学习中的 Seq2Seq 模型与注意力机制
人工智能·深度学习·神经网络·注意力机制·seq2seq
火山引擎开发者社区3 小时前
ByteBrain x 清华 VLDB25|时序多模态大语言模型 ChatTS
人工智能·语言模型·自然语言处理
SoaringPigeon3 小时前
从深度学习的角度看自动驾驶
人工智能·深度学习·自动驾驶
产品经理独孤虾3 小时前
如何利用AI大模型对已有创意进行评估,打造杀手级的广告创意
人工智能·大模型·aigc·产品经理·数字营销·智能营销·智能创意生成
MobotStone4 小时前
无代码+AI时代,为什么你仍然需要像个开发者一样思考
人工智能·算法