Bert和GPT区别

BERT(Bidirectional Encoder Representations from Transformers)和 GPT(Generative Pre-trained Transformer)都基于 Transformer 架构,但在设计目标、预训练任务和应用场景上有很大区别:


1. 架构方向性

  • BERT:双向编码器(Bidirectional)

    • 在 Transformer 的 Encoder 部分堆叠多层,将句子中所有位置同时看作上下文,能够从左右两侧同时获取语义信息。
  • GPT:单向解码器(Unidirectional)

    • 基于 Transformer 的 Decoder 部分,仅从左到右(或右到左,取决于实现)地顺序生成,对下一个 token 做预测,天然适合生成任务。

2. 预训练任务

模型 预训练任务 作用
BERT Masked Language Model (MLM) 随机 mask 输入中的若干 token,预测它们是什么; Next Sentence Prediction (NSP) 判断两句话是否相邻,增强句间理解。
GPT Autoregressive Language Modeling (ALM) 给定前文,预测下一个 token。

3. 模型角色

  • BERT:常作"Encoder"

    • 适合分类阅读理解序列标注等下游任务。
  • GPT:常作"Decoder"/纯语言生成

    • 更擅长文本生成对话系统续写补全等方向。

4. 输入输出形式

  • BERT

    • 输入:整段文本(可含[CLS] + 文本A + [SEP] + 文本B + [SEP])
    • 输出:每个位置的表示向量(也会用 [CLS] 作为整句表示)
  • GPT

    • 输入:前缀文本
    • 输出:下一个 token 分布,用于逐步生成新文本

5. 应用场景对比

场景类别 BERT 优势 GPT 优势
文本分类 直接用 [CLS] 向量 + 全连接层即可 需要在生成式接口上设计 prompt
问答/阅读理解 自然做双句匹配与 span 抽取 以生成形式回答,灵活但验证难度高
文本生成 需额外加 Decoder 或 Seq2Seq 架构 直接顺序生成,效果流畅
对话系统 通常做理解+检索式回复 生成式对话,能自主创造回复内容

6. 生态与发展

  • BERT 系列:RoBERTa、ALBERT、ELECTRA、DeBERTa......都在"Encoder"方向不断优化预训练策略和效率。
  • GPT 系列:GPT-2、GPT-3、GPT-4......不断扩大模型规模和上下文长度,更强的生成能力和开放域对话能力。

小结

  • BERT 强调"理解"(Understanding),以双向编码、Mask 预测为核心,擅长各类下游理解任务。
  • GPT 强调"生成"(Generation),以单向自回归预测为核心,擅长写作、对话、续写等生成式应用。
相关推荐
CoderIsArt2 小时前
三大主流智能体框架解析
人工智能
民乐团扒谱机2 小时前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Coder_Boy_2 小时前
Deeplearning4j+ Spring Boot 电商用户复购预测案例中相关概念
java·人工智能·spring boot·后端·spring
芷栀夏2 小时前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
L543414462 小时前
告别代码堆砌匠厂架构让你的系统吞吐量翻倍提升
大数据·人工智能·架构·自动化·rpa
孤狼warrior2 小时前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
凯子坚持 c2 小时前
构建企业级 AI 工厂:基于 CANN `cann-mlops-suite` 的端到端 MLOps 实战
人工智能
Elwin Wong2 小时前
浅析OpenClaw:从“贾维斯”梦想看下一代 AI 操作系统的架构演进
人工智能·agent·clawdbot·moltbot·openclaw
Rorsion2 小时前
PyTorch实现线性回归
人工智能·pytorch·线性回归
AI资源库2 小时前
OpenClaw:159K Star的开源AI助手正在重新定义“个人AI“的边界
人工智能·语言模型