实验设计与分析(第6版,Montgomery)第5章析因设计引导5.7节思考题5.1 R语言解题

(a)

yield <-data.frame(

X = c(90.4,90.2,90.7,90.6,90.2,90.4,90.1,90.3,90.5,90.6,89.9,90.1,90.5,90.7,90.8,90.9,90.4,90.1),

A = gl(3, 2,18), #pressure (A ) and temperature (B)

B = gl(3, 6, 18)

)

yield.aov<-aov(X~A*B, data=yield )

> summary(yield.aov)

Df Sum Sq Mean Sq F value Pr(>F)

A 2 0.7678 0.3839 21.594 0.000367 ***

B 2 0.3011 0.1506 8.469 0.008539 **

A:B 4 0.0689 0.0172 0.969 0.470006

Residuals 9 0.1600 0.0178


Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

bartlett.test(X~A, data=batter) # 对因素A

bartlett.test(X~B, data=batter) #对因素B

fit <-lm(X~A*B,data=yield)

anova(fit)

> anova(fit)

Analysis of Variance Table

Response: X

Df Sum Sq Mean Sq F value Pr(>F)

A 2 0.76778 0.38389 21.5937 0.0003673 ***

B 2 0.30111 0.15056 8.4687 0.0085392 **

A:B 4 0.06889 0.01722 0.9687 0.4700058

Residuals 9 0.16000 0.01778


Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(fit)

> summary(fit)

Call:

lm(formula = X ~ A * B, data = yield)

Residuals:

Min 1Q Median 3Q Max

-0.15 -0.10 0.00 0.10 0.15

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.030e+01 9.428e-02 957.776 <2e-16

A2 3.500e-01 1.333e-01 2.625 0.0276

A3 -7.480e-14 1.333e-01 0.000 1.0000

B2 -1.000e-01 1.333e-01 -0.750 0.4724

B3 3.000e-01 1.333e-01 2.250 0.0510

A2:B2 8.190e-14 1.886e-01 0.000 1.0000

A3:B2 -2.000e-01 1.886e-01 -1.061 0.3165

A2:B3 -1.000e-01 1.886e-01 -0.530 0.6087

A3:B3 -3.500e-01 1.886e-01 -1.856 0.0964

(Intercept) ***

A2 *

A3

B2

B3 .

A2:B2

A3:B2

A2:B3

A3:B3 .


Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1333 on 9 degrees of freedom

Multiple R-squared: 0.8767, Adjusted R-squared: 0.7671

F-statistic: 8 on 8 and 9 DF, p-value: 0.002638

par(mfrow=c(2,2))

plot(fit)

par(mfrow=c(1,2))

plot(as.numeric(yieldA), fitresiduals, xlab="Pressure", ylab="Residuals", type="p", pch=16)

plot(as.numeric(yieldB), fitresiduals, xlab="Temperature", ylab="Residuals", pch=16)

with(battery,interaction.plot(yieldA,yieldB,yield$X,type="b",pch=19,fixed=T,xlab="Temperature (°F)",ylab="pressure"))

plot.design(X~A*B,data=yield)

yield <-data.frame(

X = c(90.4,90.2,90.7,90.6,90.2,90.4,90.1,90.3,90.5,90.6,89.9,90.1,90.5,90.7,90.8,90.9,90.4,90.1),

A = c(150,150,150,150,150,150,160,160,160,160,160,160,170,170,170,170,170,170), #pressure (A ) and temperature (B)

B = c(200,200,215,215,230,230,200,200,215,215,230,230,200,200,215,215,230,230)

)

fit <-lm(X~A*B+I(A^2)*I(B^2)+A:I(B^2)+B:I(A^2),data=yield)

anova(fit)

summary(fit)

tmp.B <- seq(200,230,by=.5)

tmp.A <- seq(150,170,by=.5)

tmp <- list(A=tmp.A,B=tmp.B)

new <- expand.grid(tmp)

new$fit <- c(predict(fit,new))

require(lattice)

contourplot (fit~A*B ,data=new, cuts=8,region=T,col.regions=gray(7:16/16))

yield <-data.frame(

X = c(90.4,90.2,90.7,90.6,90.2,90.4,90.1,90.3,90.5,90.6,89.9,90.1,90.5,90.7,90.8,90.9,90.4,90.1),

B = gl(3, 2,18), #pressure (A ) and temperature (B)

A = gl(3, 6, 18)

)

fit <-lm(as.numeric(X)~as.numeric(A)*as.numeric(B)+I(as.numeric(A)^2)*I(as.numeric(B)^2)+A:I(as.numeric(B)^2)+as.numeric(B):I(as.numeric(A)^2),data=yield)

anova(fit)

summary(fit)

tmp.A <- seq(200,230,by=.5)

tmp.B <- seq(150,170,by=.5)

tmp <- list(A=tmp.A,B=tmp.B)

new <- expand.grid(tmp)

new$fit <- c(predict(fit,new))

require(lattice)

contourplot (fit~A*B ,data=new, cuts=8,region=T,col.regions=gray(7:16/16))

相关推荐
Faker66363aaa19 小时前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
Liue612312312 天前
自卸车多部件识别 _ Mask R-CNN改进模型实现(Caffe+FPN)_1
r语言·cnn·caffe
jiang_changsheng4 天前
环境管理工具全景图与深度对比
java·c语言·开发语言·c++·python·r语言
JicasdC123asd4 天前
使用Faster R-CNN模型训练汽车品牌与型号检测数据集 改进C4结构 优化汽车识别系统 多类别检测 VOC格式
r语言·cnn·汽车
请你喝好果汁6414 天前
## 学习笔记:R 语言中比例字符串的数值转换,如GeneRatio中5/100的处理
笔记·学习·r语言
怦怦蓝4 天前
DB2深度解析:从架构原理到与R语言的集成实践
开发语言·架构·r语言·db2
新新学长搞科研4 天前
【CCF主办 | 高认可度会议】第六届人工智能、大数据与算法国际学术会议(CAIBDA 2026)
大数据·开发语言·网络·人工智能·算法·r语言·中国计算机学会
Piar1231sdafa5 天前
战斗车辆状态识别与分类 --- 基于Mask R-CNN和RegNet的模型实现
r语言·cnn
陳土5 天前
R语言Offier包源码—1:read_docx()
r语言
善木科研喵5 天前
IF5.9分,α-硫辛酸如何缓解化疗神经毒性?网络毒理学结合网络药理学双重锁定关键通路!
数据库·数据分析·r语言·sci·生信分析·医学科研