基于matlab遗传算法和模拟退火算法求解三维装箱优化问题

一、遗传算法和模拟退火算法求解三维装箱优化问题

遗传算法(Genetic Algorithm)和模拟退火算法(Simulated Annealing Algorithm)都是优化算法,可以用来求解三维装箱优化问题。

遗传算法原理和流程:

1 原理:

遗传算法模拟自然选择和遗传机制,通过模拟生物进化过程来搜索最优解。

将问题的解表示为染色体(Chromosome),每个染色体对应一个个体解。

2 流程:

初始化群体:随机生成一组个体作为初始种群。

选择:根据每个个体的适应度(Fitness)进行选择,常用的选择方法有轮盘赌、竞争选择等。

交叉:选取一定数量的个体进行交叉操作,生成新的个体。

变异:对新生成的个体进行变异操作,引入新的变化。

更新种群:根据一定的规则更新种群,可以采用精英保留策略等。

终止条件:当满足停止条件时,算法停止并输出结果。

模拟退火算法原理和流程:

1 原理:

模拟退火算法模拟固体物体退火的过程,通过在搜索过程中逐渐降低温度,从而逃离局部最优解,朝向全局最优解。

算法包括接受劣解的概率,从而能够跳出局部最优解。

2 流程:

初始化:随机生成初始解,并设置初始温度和降温速度。

循环:

生成新解:通过对当前解进行扰动生成新解。

计算能量差:计算新解与当前解的能量差。

接受新解:

若能量差为负,则接受新解。

若能量差为正,以一定概率接受新解,概率随温度和能量差变化。

降温:降低温度。

终止条件:当满足停止条件时,算法停止并输出结果。

通过遗传算法和模拟退火算法可以有效求解三维装箱优化问题,通过不断迭代搜索,最终获得较优的装箱方案。

利用遗传算法和模拟退火,解决三维装箱问题,并可图形化展示装箱方案结果

Boxing Problem/a.ps , 28835

Boxing Problem/box , 184

Boxing Problem/cargo , 744

Boxing Problem/cargo&box.xlsx , 12857

Boxing Problem/depict.m , 2823

Boxing Problem/evaluate.m , 475

Boxing Problem/GENE.m , 1683

Boxing Problem/main.m , 3342

Boxing Problem/placement.m , 1711

Boxing Problem/result.m , 459

Boxing Problem/this is .ps , 28844

Boxing Problem/transform.m , 387

相关推荐
aini_lovee1 小时前
MATLAB基于小波技术的图像融合实现
开发语言·人工智能·matlab
3GPP仿真实验室2 小时前
【Matlab源码】6G候选波形:OFDM-IM 增强仿真平台 DM、CI
开发语言·matlab·ci/cd
rit84324996 小时前
MATLAB中Teager能量算子提取与解调信号的实现
开发语言·matlab
我找到地球的支点啦6 小时前
通信扩展——扩频技术(超级详细,附带Matlab代码)
开发语言·matlab
Dev7z18 小时前
基于 MATLAB 的铣削切削力建模与仿真
开发语言·matlab
fengfuyao98521 小时前
基于MATLAB的表面织构油润滑轴承故障频率提取(改进VMD算法)
人工智能·算法·matlab
机器学习之心21 小时前
基于随机森林模型的轴承剩余寿命预测MATLAB实现!
算法·随机森林·matlab
rit84324991 天前
基于MATLAB的环境障碍模型构建与蚁群算法路径规划实现
开发语言·算法·matlab
hoiii1871 天前
MATLAB SGM(半全局匹配)算法实现
前端·算法·matlab
yong99901 天前
MATLAB面波频散曲线反演程序
开发语言·算法·matlab