OpenCV CUDA模块直方图计算------用于在 GPU 上执行对比度受限的自适应直方图均衡类cv::cuda::CLAHE

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::cuda::CLAHE 是 OpenCV 的 CUDA 模块中提供的一个类,用于在 GPU 上执行对比度受限的自适应直方图均衡(Contrast Limited Adaptive Histogram Equalization, CLAHE)。CLAHE 是一种图像处理技术,旨在提高图像局部区域的对比度,同时限制了对比度增强的程度以避免噪声的放大。

主要功能

  • 局部对比度增强:通过将图像划分为小块,并对每个小块进行直方图均衡化来提升局部对比度。
  • 对比度限制:通过设置阈值来限制单个灰度值的最大贡献,从而防止噪声被过度放大。
  • GPU 加速:利用 NVIDIA GPU 进行加速计算,适用于实时或高性能需求的应用场景。

类概述

以下是 cv::cuda::CLAHE 的一些关键成员函数和说明:

构造函数

cpp 复制代码
  CLAHE(double clipLimit=40.0, int tileGridSize=8):
复制代码
    clipLimit:对比度限制阈值。默认值为 40.0。
    tileGridSize:划分网格的大小(以像素为单位)。默认值为 8x8。

设置与获取参数

cpp 复制代码
 //设置对比度限制。
void setClipLimit
(
	double clipLimit
)
cpp 复制代码
double getClipLimit() const://获取对比度限制
cpp 复制代码
// 设置划分网格的大小。
 void setTilesGridSize
 (
 	cv::Size tileGridSize
 )
cpp 复制代码
cv::Size getTilesGridSize() const://获取划分网格的大小。

应用 CLAHE

cpp 复制代码
void apply
(
	InputArray src, 
	OutputArray dst
):
//在给定输入图像上应用 CLAHE 算法,并将结果存储在输出图像中。
复制代码
    src:输入图像,通常是灰度图像。
    dst:输出图像,与输入图像具有相同的尺寸和类型。

示例代码

以下是一个简单的例子,演示如何使用 cv::cuda::CLAHE 对图像进行处理:

cpp 复制代码
#include <opencv2/cudaarithm.hpp>   // 包含CUDA算术运算头文件
#include <opencv2/cudaimgproc.hpp>  // 包含CUDA图像处理头文件
#include <opencv2/opencv.hpp>

int main()
{
    // 加载图像
    cv::Mat img = cv::imread( "/media/dingxin/data/study/OpenCV/sources/images/Lenna.png", cv::IMREAD_GRAYSCALE );
    if ( img.empty() )
    {
        std::cerr << "无法加载图像" << std::endl;
        return -1;
    }

    // 将图像上传到GPU
    cv::cuda::GpuMat d_img;
    d_img.upload( img );

    // 创建CLAHE对象
    cv::Ptr< cv::cuda::CLAHE > clahe = cv::cuda::createCLAHE( 40.0, cv::Size( 8, 8 ) );

    // 输出图像
    cv::cuda::GpuMat d_result;

    // 应用CLAHE
    clahe->apply( d_img, d_result );

    // 下载结果到主机内存
    cv::Mat result;
    d_result.download( result );

    // 显示原始图像和处理后的图像
    cv::imshow( "Original Image", img );
    cv::imshow( "CLAHE Enhanced Image", result );
    cv::waitKey( 0 );

    return 0;
}

运行结果

相关推荐
l1t28 分钟前
利用DeepSeek编写能在DuckDB中读PostgreSQL表的表函数
c++·人工智能
光锥智能35 分钟前
AI视频“入驻”手机,多模态成智能终端的新战场
人工智能
寻丶幽风38 分钟前
论文阅读笔记——Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
论文阅读·人工智能·笔记·视频理解
985小水博一枚呀1 小时前
【AI大模型学习路线】第二阶段之RAG基础与架构——第十一章(【项目实战】基于RAG的新闻推荐)推荐中的召回与精排 ?
人工智能·学习·架构·pdf
永恒的溪流1 小时前
无法运用pytorch环境、改环境路径、隔离环境
人工智能·pytorch·python·深度学习
猫天意1 小时前
【目标检测】检测网络中neck的核心作用
人工智能·目标检测·计算机视觉·基础·cv
猫天意1 小时前
【目标检测】backbone究竟有何关键作用?
人工智能·目标检测·计算机视觉·cv
FL16238631291 小时前
[yolov11改进系列]基于yolov11引入上下文锚点注意力CAA的python源码+训练源码
人工智能·yolo·目标跟踪
取酒鱼食--【余九】2 小时前
rl_sar功能包详解
人工智能·笔记·算法·机器人·强化学习
pen-ai2 小时前
【深度学习】18. 生成模型:Variational Auto-Encoder(VAE)详解
人工智能·深度学习