论文略读: STREAMLINING REDUNDANT LAYERS TO COMPRESS LARGE LANGUAGE MODELS

2025 ICLR

  • 判断模型层的重要性->剪去不重要的层(用轻量网络代替)
    • 这种方法只减少了层数量,所以可以用常用的方法加载模型
  • 层剪枝阶段
    • 通过输入与输出的余弦相似度来判断各个层的重要性
    • 具有高余弦相似度的层倾向于聚集在一起,因此该方法会修剪连续的层
  • 层替换阶段
    • 训练了一个轻量级蒸馏小模型来弥补剪枝带来的性能损失
    • 根据预定义的修剪率选择从 i 到 i+n 的层进行修剪后,从第 i 层的输入和第 i+n 层的输出中收集隐藏状态作为训练数据,并使用 MSE Loss 通过蒸馏来训练一个轻量级模型
    • 层替换 VS LoRA
      • 过去的结构化剪枝方法一般使用 LoRA 方法训练,而相比之下,层替换方法有着以下优势:
        • 更低的 GPU 内存消耗
          • 层替换方法只需要在隐藏状态收集期间对原始模型进行前向传播的成本
          • 在训练期间,仅训练轻量级网络
          • ------>比 LoRA 更节省内存
        • 更合理的训练方法
          • LoRA 直接训练剩余的层
          • ------>用轻量级网络替换修剪层比训练剩余层更简单
相关推荐
深圳市恒星物联科技有限公司3 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星3 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃3 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao3 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
中金快讯3 小时前
新视野混合净值波动有几何?贝莱德基金回撤控制策略是否命中关键?
人工智能
楚兴3 小时前
MacBook M1 安装 OpenClaw 完整指南
人工智能·后端
23遇见3 小时前
探索CANN:开源AI计算底座的关键组件与技术思想
人工智能
jl48638213 小时前
变比测试仪显示屏的“标杆“配置!如何兼顾30000小时寿命与六角矢量图精准显示?
人工智能·经验分享·嵌入式硬件·物联网·人机交互
2301_818730563 小时前
transformer(上)
人工智能·深度学习·transformer
木枷3 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习