Mask_RCNN 环境配置及训练

目录

一、Mask_RCNN代码及权重

1、源码下载

2、权重获取

二、环境配置

1、创建虚拟环境

2、安装必要的包

三、测试环境

1、使用coco

2、使用balloon

四、测试

1、使用coco

2、使用balloon


一、Mask_RCNN代码及权重

均从github获取,以下是相关链接:

1、源码下载

matterport/Mask_RCNN: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlowhttps://github.com/matterport/Mask_RCNN

2、权重获取

Releases · matterport/Mask_RCNNhttps://github.com/matterport/Mask_RCNN/releases分别获取两个权重文件(蓝框部分为测试用数据集)

二、环境配置

1、创建虚拟环境

**注意:**使用的Python版本为3.6,因为所需库的版本并不都适配新版Python

python 复制代码
conda create -n RCNN python=3.6

启动环境:

python 复制代码
conda activate RCNN

2、安装必要的包

根据以下版本要求安装所需的库

python 复制代码
numpy==1.19.5
scipy==1.2.1
pillow==8.2.0
cython==0.29.22
matplotlib==3.3.4
scikit-image==0.17.2
tensorflow==1.15.0
keras==2.2.5
opencv-python==4.3.0.38
h5py==2.10.0
imgaug
IPython[all]
pycocotools

注意: 因为在TensorFlow 1.x中,`tf.reduce_mean`的参数是`keep_dims`(带下划线),而在TensorFlow 2.x中改为`keepdims`(无下划线);`Keras==2.2.5` (与TF 1.x兼容) 而 `Keras==2.10.0` (与TF 2.x兼容)、`numpy==1.19.5` (TF 1.15兼容) 而 `numpy==1.23.5` (TF 2.x兼容)

所以版本过高、库之间版本不兼容会导致以下报错:

Traceback (most recent call last):

File "balloon.py", line 364, in <module>

train(model)

File "balloon.py", line 199, in train

layers='heads')

File "E:\machine-vision\Mask_RCNN-master\mrcnn\model.py", line 2354, in train

self.compile(learning_rate, self.config.LEARNING_MOMENTUM)

File "E:\machine-vision\Mask_RCNN-master\mrcnn\model.py", line 2173, in compile

tf.reduce_mean(layer.output, keepdims=True)

TypeError: reduce_mean() got an unexpected keyword argument 'keepdims'

三、测试环境

可以用coco数据集或balloon数据集进行测试,分别为:

1、使用coco

python 复制代码
python coco.py train --dataset=/path/to/coco/ --model=E:/machine-vision/Mask_RCNN-master/mask_rcnn_coco.h5 --download=True

数据集和权重文件位置自行调整,如不需要再下载数据,就把 --download=True 删掉或改为False

2、使用balloon

python 复制代码
python balloon.py train --dataset="E:/machine-vision/dataset/balloon_dataset/balloon" --weights="E:/machine-vision/Mask_RCNN-master/mask_rcnn_balloon.h5"

训练的权重文件会保存在log文件夹下

四、测试

1、使用coco

python 复制代码
python coco.py evaluate --dataset=/path/to/coco/ --model=last

2、使用balloon

python 复制代码
python balloon.py splash --weights="E:/machine-vision/Mask_RCNN-master/mask_rcnn_balloon.h5" --image="E:/machine-vision/dataset/balloon_dataset/balloon/train/699765866_abaad7274d_b.jpg"
相关推荐
风已经起了18 小时前
FPGA学习笔记——图像处理之对比度调节(直方图均衡化)
图像处理·笔记·学习·fpga开发·fpga
go_bai18 小时前
Linux--常见工具
linux·开发语言·经验分享·笔记·vim·学习方法
吃饭睡觉发paper18 小时前
High precision single-photon object detection via deep neural networks,OE2024
人工智能·目标检测·计算机视觉
醉方休19 小时前
TensorFlow.js高级功能
javascript·人工智能·tensorflow
云宏信息19 小时前
赛迪顾问《2025中国虚拟化市场研究报告》解读丨虚拟化市场迈向“多元算力架构”,国产化与AI驱动成关键变量
网络·人工智能·ai·容器·性能优化·架构·云计算
红苕稀饭66619 小时前
VideoChat-Flash论文阅读
人工智能·深度学习·机器学习
周杰伦_Jay19 小时前
【图文详解】强化学习核心框架、数学基础、分类、应用场景
人工智能·科技·算法·机器学习·计算机视觉·分类·数据挖掘
黄啊码20 小时前
Coze新品实测:当AI开始像产品经理思考,我和程序员吵架的次数少了
人工智能·agent·coze
jie*20 小时前
小杰机器学习(six)——概率论——1.均匀分布2.正态分布3.数学期望4.方差5.标准差6.多维随机变量及其分布
人工智能·机器学习·概率论
挽安学长20 小时前
通过 gaccode在国内使用ClaudeCode,Windows、Mac 用户配置指南!
人工智能