Mask_RCNN 环境配置及训练

目录

一、Mask_RCNN代码及权重

1、源码下载

2、权重获取

二、环境配置

1、创建虚拟环境

2、安装必要的包

三、测试环境

1、使用coco

2、使用balloon

四、测试

1、使用coco

2、使用balloon


一、Mask_RCNN代码及权重

均从github获取,以下是相关链接:

1、源码下载

matterport/Mask_RCNN: Mask R-CNN for object detection and instance segmentation on Keras and TensorFlowhttps://github.com/matterport/Mask_RCNN

2、权重获取

Releases · matterport/Mask_RCNNhttps://github.com/matterport/Mask_RCNN/releases分别获取两个权重文件(蓝框部分为测试用数据集)

二、环境配置

1、创建虚拟环境

**注意:**使用的Python版本为3.6,因为所需库的版本并不都适配新版Python

python 复制代码
conda create -n RCNN python=3.6

启动环境:

python 复制代码
conda activate RCNN

2、安装必要的包

根据以下版本要求安装所需的库

python 复制代码
numpy==1.19.5
scipy==1.2.1
pillow==8.2.0
cython==0.29.22
matplotlib==3.3.4
scikit-image==0.17.2
tensorflow==1.15.0
keras==2.2.5
opencv-python==4.3.0.38
h5py==2.10.0
imgaug
IPython[all]
pycocotools

注意: 因为在TensorFlow 1.x中,`tf.reduce_mean`的参数是`keep_dims`(带下划线),而在TensorFlow 2.x中改为`keepdims`(无下划线);`Keras==2.2.5` (与TF 1.x兼容) 而 `Keras==2.10.0` (与TF 2.x兼容)、`numpy==1.19.5` (TF 1.15兼容) 而 `numpy==1.23.5` (TF 2.x兼容)

所以版本过高、库之间版本不兼容会导致以下报错:

Traceback (most recent call last):

File "balloon.py", line 364, in <module>

train(model)

File "balloon.py", line 199, in train

layers='heads')

File "E:\machine-vision\Mask_RCNN-master\mrcnn\model.py", line 2354, in train

self.compile(learning_rate, self.config.LEARNING_MOMENTUM)

File "E:\machine-vision\Mask_RCNN-master\mrcnn\model.py", line 2173, in compile

tf.reduce_mean(layer.output, keepdims=True)

TypeError: reduce_mean() got an unexpected keyword argument 'keepdims'

三、测试环境

可以用coco数据集或balloon数据集进行测试,分别为:

1、使用coco

python 复制代码
python coco.py train --dataset=/path/to/coco/ --model=E:/machine-vision/Mask_RCNN-master/mask_rcnn_coco.h5 --download=True

数据集和权重文件位置自行调整,如不需要再下载数据,就把 --download=True 删掉或改为False

2、使用balloon

python 复制代码
python balloon.py train --dataset="E:/machine-vision/dataset/balloon_dataset/balloon" --weights="E:/machine-vision/Mask_RCNN-master/mask_rcnn_balloon.h5"

训练的权重文件会保存在log文件夹下

四、测试

1、使用coco

python 复制代码
python coco.py evaluate --dataset=/path/to/coco/ --model=last

2、使用balloon

python 复制代码
python balloon.py splash --weights="E:/machine-vision/Mask_RCNN-master/mask_rcnn_balloon.h5" --image="E:/machine-vision/dataset/balloon_dataset/balloon/train/699765866_abaad7274d_b.jpg"
相关推荐
用户1395118811242 分钟前
AI日报 - 2025年07月26日
人工智能
大模型真好玩2 分钟前
深入浅出LangChain AI Agent智能体开发教程(四)—LangChain记忆存储与多轮对话机器人搭建
前端·人工智能·python
双向332 分钟前
多智能体系统设计:协作、竞争与涌现行为
人工智能
Q同学3 分钟前
SciMaster:无需微调,在人类最后考试上刷新 SOTA
人工智能·llm·agent
qiyue774 分钟前
AI编程专栏(七)-什么是上下文工程,与提示工程区别
人工智能·ai编程·cursor
love530love4 分钟前
命令行创建 UV 环境及本地化实战演示—— 基于《Python 多版本与开发环境治理架构设计》的最佳实践
开发语言·人工智能·windows·python·conda·uv
wayne2146 分钟前
不写一行代码,也能做出 App?一文看懂「Vibe Coding」
人工智能·ai编程
洞见新研社8 分钟前
谁将统治AI游戏时代?腾讯、网易、米哈游技术暗战
人工智能
速易达网络28 分钟前
[特殊字符]️ 风暴之眼:AI时代IT从业者的重构与重生
人工智能·重构
Sui_Network38 分钟前
探索 Sui 上 BTCfi 的各类资产
大数据·人工智能·科技·游戏·区块链