Fisher准则例题——给定类内散度矩阵和类样本均值

设有两类样本,两类样本的类内散度矩阵分别为

S 1 = ( 1 1 / 2 1 / 2 1 ) , S 2 = ( 1 − 1 / 2 − 1 / 2 1 ) S_1 = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}, \quad S_2 = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix} S1=(11/21/21),S2=(1−1/2−1/21)

各类样本均值分别为

μ 1 = ( 2 , 0 ) ⊤ 和 μ 2 = ( 2 , 2 ) ⊤ \mu_1 = (2, 0)^\top \text{ 和 } \mu_2 = (2, 2)^\top μ1=(2,0)⊤ 和 μ2=(2,2)⊤

利用 Fisher 准则求其决策面方程(假定分类阈值点为均值),并求新样本 ( 1 , 1 ) ⊤ (1, 1)^\top (1,1)⊤ 属于哪类?


解:

S w = S 1 + S 2 = ( 2 0 0 2 ) S_{\bm w} = S_1 + S_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} Sw=S1+S2=(2002)

S w − 1 = ( 1 / 2 0 0 1 / 2 ) S_{\bm w}^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} Sw−1=(1/2001/2)

w = S w − 1 ( μ 1 − μ 2 ) = ( 0 , − 1 ) ⊤ {\bm w} = S_{\bm w}^{-1} (\mu_1 - \mu_2) = (0, -1)^\top w=Sw−1(μ1−μ2)=(0,−1)⊤

y 0 ∗ = w ⊤ μ 1 + μ 2 2 = ( 0 , − 1 ) ( 2 , 1 ) ⊤ = − 1 y_0^* = {\bm w}^\top \frac{\mu_1 + \mu_2}{2} = (0, -1)(2, 1)^\top = -1 y0∗=w⊤2μ1+μ2=(0,−1)(2,1)⊤=−1

w ⊤ ( 1 , 1 ) ⊤ = − 1 = y 0 ∗ {\bm w}^\top (1, 1)^\top = -1 = y_0^* w⊤(1,1)⊤=−1=y0∗

相关推荐
光羽隹衡7 分钟前
机器学习——DBSCAN算法
人工智能·算法·机器学习
sonadorje11 分钟前
机器学习中的逻辑回归
人工智能·机器学习·逻辑回归
渡我白衣13 分钟前
计算机组成原理(14):算术逻辑单元ALU
大数据·人工智能·算法·机器学习·计组·数电·alu
深度之眼17 分钟前
机器学习可解释性的研究进展!
深度学习·机器学习·可解释性
源于花海1 小时前
迁移学习的第一类方法:数据分布自适应(3)——联合分布自适应
人工智能·机器学习·迁移学习·联合分布自适应
武子康1 小时前
大数据-208 岭回归与Lasso回归:区别、应用与选择指南
大数据·后端·机器学习
RockHopper20251 小时前
驾驶认知的本质:人类模式 vs 端到端自动驾驶
人工智能·神经网络·机器学习·自动驾驶·具身认知
Yzzz-F1 小时前
P4145 上帝造题的七分钟 2 / 花神游历各国[线段树 区间开方(剪枝) + 区间求和]
算法·机器学习·剪枝
微尘hjx1 小时前
【深度学习02】YOLO模型的数据集、训练、验证、预测、导出
人工智能·python·深度学习·yolo·机器学习·训练·yolo11