Fisher准则例题——给定类内散度矩阵和类样本均值

设有两类样本,两类样本的类内散度矩阵分别为

S 1 = ( 1 1 / 2 1 / 2 1 ) , S 2 = ( 1 − 1 / 2 − 1 / 2 1 ) S_1 = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}, \quad S_2 = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix} S1=(11/21/21),S2=(1−1/2−1/21)

各类样本均值分别为

μ 1 = ( 2 , 0 ) ⊤ 和 μ 2 = ( 2 , 2 ) ⊤ \mu_1 = (2, 0)^\top \text{ 和 } \mu_2 = (2, 2)^\top μ1=(2,0)⊤ 和 μ2=(2,2)⊤

利用 Fisher 准则求其决策面方程(假定分类阈值点为均值),并求新样本 ( 1 , 1 ) ⊤ (1, 1)^\top (1,1)⊤ 属于哪类?


解:

S w = S 1 + S 2 = ( 2 0 0 2 ) S_{\bm w} = S_1 + S_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} Sw=S1+S2=(2002)

S w − 1 = ( 1 / 2 0 0 1 / 2 ) S_{\bm w}^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} Sw−1=(1/2001/2)

w = S w − 1 ( μ 1 − μ 2 ) = ( 0 , − 1 ) ⊤ {\bm w} = S_{\bm w}^{-1} (\mu_1 - \mu_2) = (0, -1)^\top w=Sw−1(μ1−μ2)=(0,−1)⊤

y 0 ∗ = w ⊤ μ 1 + μ 2 2 = ( 0 , − 1 ) ( 2 , 1 ) ⊤ = − 1 y_0^* = {\bm w}^\top \frac{\mu_1 + \mu_2}{2} = (0, -1)(2, 1)^\top = -1 y0∗=w⊤2μ1+μ2=(0,−1)(2,1)⊤=−1

w ⊤ ( 1 , 1 ) ⊤ = − 1 = y 0 ∗ {\bm w}^\top (1, 1)^\top = -1 = y_0^* w⊤(1,1)⊤=−1=y0∗

相关推荐
weixin_5195357716 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
技术闲聊DD18 小时前
机器学习(1)- 机器学习简介
人工智能·机器学习
程序员大雄学编程19 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
德育处主任21 小时前
地表最强“慧眼”,给大模型戴上智能眼镜 PaddleOCR-VL
人工智能·机器学习·图像识别
i.ajls1 天前
强化学习入门-1-CartPole-v1(DQN)
机器学习·强化学习·dqn
Victory_orsh1 天前
“自然搞懂”深度学习系列(基于Pytorch架构)——01初入茅庐
人工智能·pytorch·python·深度学习·算法·机器学习
Ro Jace1 天前
模式识别与机器学习课程笔记(11):深度学习
笔记·深度学习·机器学习
碱化钾1 天前
Lipschitz连续及其常量
人工智能·机器学习
蜉蝣之翼❉1 天前
图像处理之浓度(AI 调研)
图像处理·人工智能·机器学习
云青黛1 天前
轮廓系数(一个异型簇的分类标准)
人工智能·算法·机器学习