Fisher准则例题——给定类内散度矩阵和类样本均值

设有两类样本,两类样本的类内散度矩阵分别为

S 1 = ( 1 1 / 2 1 / 2 1 ) , S 2 = ( 1 − 1 / 2 − 1 / 2 1 ) S_1 = \begin{pmatrix} 1 & 1/2 \\ 1/2 & 1 \end{pmatrix}, \quad S_2 = \begin{pmatrix} 1 & -1/2 \\ -1/2 & 1 \end{pmatrix} S1=(11/21/21),S2=(1−1/2−1/21)

各类样本均值分别为

μ 1 = ( 2 , 0 ) ⊤ 和 μ 2 = ( 2 , 2 ) ⊤ \mu_1 = (2, 0)^\top \text{ 和 } \mu_2 = (2, 2)^\top μ1=(2,0)⊤ 和 μ2=(2,2)⊤

利用 Fisher 准则求其决策面方程(假定分类阈值点为均值),并求新样本 ( 1 , 1 ) ⊤ (1, 1)^\top (1,1)⊤ 属于哪类?


解:

S w = S 1 + S 2 = ( 2 0 0 2 ) S_{\bm w} = S_1 + S_2 = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} Sw=S1+S2=(2002)

S w − 1 = ( 1 / 2 0 0 1 / 2 ) S_{\bm w}^{-1} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix} Sw−1=(1/2001/2)

w = S w − 1 ( μ 1 − μ 2 ) = ( 0 , − 1 ) ⊤ {\bm w} = S_{\bm w}^{-1} (\mu_1 - \mu_2) = (0, -1)^\top w=Sw−1(μ1−μ2)=(0,−1)⊤

y 0 ∗ = w ⊤ μ 1 + μ 2 2 = ( 0 , − 1 ) ( 2 , 1 ) ⊤ = − 1 y_0^* = {\bm w}^\top \frac{\mu_1 + \mu_2}{2} = (0, -1)(2, 1)^\top = -1 y0∗=w⊤2μ1+μ2=(0,−1)(2,1)⊤=−1

w ⊤ ( 1 , 1 ) ⊤ = − 1 = y 0 ∗ {\bm w}^\top (1, 1)^\top = -1 = y_0^* w⊤(1,1)⊤=−1=y0∗

相关推荐
宁大小白15 分钟前
pythonstudy Day39
python·机器学习
大千AI助手36 分钟前
基于OpenAPI生成的 SDK 的工业级和消费级概念区别
人工智能·python·机器学习·openai·代码生成·openapi·大千ai助手
黑客思维者1 小时前
机器学习007:监督学习【回归算法】(线性回归)--股票背后的预测学
学习·机器学习·回归·线性回归·监督学习
张小九991 小时前
fpocket安装和使用教程
linux·机器学习·github
JoannaJuanCV2 小时前
自动驾驶—CARLA仿真(19)automatic_control demo
人工智能·机器学习·自动驾驶
Alluxio2 小时前
Alluxio正式登陆Oracle云市场,为AI工作负载提供TB级吞吐量与亚毫秒级延迟
人工智能·分布式·机器学习·缓存·ai·oracle
_Li.3 小时前
机器学习-非度量方法
人工智能·机器学习·支持向量机
l木本I3 小时前
星尘自研Lumo-1模型(mind to hand)详细解读
深度学习·机器学习·计算机视觉·transformer·美食
阿拉斯攀登3 小时前
电子签名:笔迹特征比对核心算法详解
人工智能·算法·机器学习·电子签名·汉王
一招定胜负3 小时前
机器学习算法三:决策树
算法·决策树·机器学习