sqlite-vec:谁说SQLite不是向量数据库?

sqlite-vec 是一个 SQLite 向量搜索插件,具有以零依赖、轻量级、跨平台和高效 KNN 搜索等优势,是本地化向量检索(例如 RAG)、轻量级 AI 应用以及边缘计算等场景的理想工具。

sqlite-vec 使用纯 C 语言实现,零外部依赖,体积小巧,适用于各种 SQLite 运行环境(Linux、MacOS、Windows、WASM、Android、iOS、Raspberry Pi 等)。

sqlite-vec 基于 vec0 虚拟表实现了 float、int8 以及二进制向量的存储与相似查询,所有操作都基于 SQL 完成。

sqlite-vec 提供了多种编程语言(Python、Ruby、Node.js、Deno、Bun、Go、Rust 等)驱动,以下命令用于安装 Python 模块:

bash 复制代码
pip install sqlite-vec

接下来是一个在 Python 代码中使用 sqlite-vec 的简单示例:

python 复制代码
import sqlite3
import sqlite_vec

from typing import List
import struct


def serialize_f32(vector: List[float]) -> bytes:
    """serializes a list of floats into a compact "raw bytes" format"""
    return struct.pack("%sf" % len(vector), *vector)


db = sqlite3.connect(":memory:")
db.enable_load_extension(True)
sqlite_vec.load(db)
db.enable_load_extension(False)

sqlite_version, vec_version = db.execute(
    "select sqlite_version(), vec_version()"
).fetchone()
print(f"sqlite_version={sqlite_version}, vec_version={vec_version}")

items = [
    (1, [0.1, 0.1, 0.1, 0.1]),
    (2, [0.2, 0.2, 0.2, 0.2]),
    (3, [0.3, 0.3, 0.3, 0.3]),
    (4, [0.4, 0.4, 0.4, 0.4]),
    (5, [0.5, 0.5, 0.5, 0.5]),
]
query = [0.3, 0.3, 0.3, 0.3]

db.execute("CREATE VIRTUAL TABLE vec_items USING vec0(embedding float[4])")

with db:
    for item in items:
        db.execute(
            "INSERT INTO vec_items(rowid, embedding) VALUES (?, ?)",
            [item[0], serialize_f32(item[1])],
        )

rows = db.execute(
    """
      SELECT
        rowid,
        distance
      FROM vec_items
      WHERE embedding MATCH ?
      ORDER BY distance
      LIMIT 3
    """,
    [serialize_f32(query)],
).fetchall()

print(rows)

代码运行的结果如下:

bash 复制代码
sqlite_version=3.45.3, vec_version=v0.1.6
[(3, 0.0), (4, 0.19999998807907104), (2, 0.20000001788139343)]

更多的介绍和示例可以参考网址:

https://alexgarcia.xyz/sqlite-vec/

另外,这个开源项目的作者还提供了两个用于生成文本嵌入(Text Embedding)的项目,配合 sqlite-vec 使用更加方便:

  • sqlite-rembed,基于远程 API(OpenAI、Nomic、Ollama 等)生成文本嵌入;
  • sqlite-lembed,基于 .gguf 格式的本地嵌入模型生成文本嵌入。
相关推荐
知乎的哥廷根数学学派4 分钟前
基于多模态特征融合和可解释性深度学习的工业压缩机异常分类与预测性维护智能诊断(Python)
网络·人工智能·pytorch·python·深度学习·机器学习·分类
mantch12 分钟前
Nano Banana进行AI绘画中文总是糊?一招可重新渲染,清晰到可直接汇报
人工智能·aigc
编程小白_正在努力中29 分钟前
第1章 机器学习基础
人工智能·机器学习
Zoey的笔记本1 小时前
「支持ISO27001的GTD协作平台」数据生命周期管理方案与加密通信协议
java·前端·数据库
wyw00001 小时前
目标检测之SSD
人工智能·目标检测·计算机视觉
AKAMAI1 小时前
圆满循环:Akamai 的演进如何为 AI 推理时代奠定基石
人工智能·云计算
什么都不会的Tristan1 小时前
MybatisPlus-扩展功能
数据库·mysql
幻云20101 小时前
AI自动化编排:从入门到精通(基于Dify构建AI智能系统)
运维·人工智能·自动化
超级种码1 小时前
Redis:Redis 数据类型
数据库·redis·缓存
CoderJia程序员甲1 小时前
GitHub 热榜项目 - 日榜(2026-1-13)
人工智能·ai·大模型·github·ai教程