sqlite-vec:谁说SQLite不是向量数据库?

sqlite-vec 是一个 SQLite 向量搜索插件,具有以零依赖、轻量级、跨平台和高效 KNN 搜索等优势,是本地化向量检索(例如 RAG)、轻量级 AI 应用以及边缘计算等场景的理想工具。

sqlite-vec 使用纯 C 语言实现,零外部依赖,体积小巧,适用于各种 SQLite 运行环境(Linux、MacOS、Windows、WASM、Android、iOS、Raspberry Pi 等)。

sqlite-vec 基于 vec0 虚拟表实现了 float、int8 以及二进制向量的存储与相似查询,所有操作都基于 SQL 完成。

sqlite-vec 提供了多种编程语言(Python、Ruby、Node.js、Deno、Bun、Go、Rust 等)驱动,以下命令用于安装 Python 模块:

bash 复制代码
pip install sqlite-vec

接下来是一个在 Python 代码中使用 sqlite-vec 的简单示例:

python 复制代码
import sqlite3
import sqlite_vec

from typing import List
import struct


def serialize_f32(vector: List[float]) -> bytes:
    """serializes a list of floats into a compact "raw bytes" format"""
    return struct.pack("%sf" % len(vector), *vector)


db = sqlite3.connect(":memory:")
db.enable_load_extension(True)
sqlite_vec.load(db)
db.enable_load_extension(False)

sqlite_version, vec_version = db.execute(
    "select sqlite_version(), vec_version()"
).fetchone()
print(f"sqlite_version={sqlite_version}, vec_version={vec_version}")

items = [
    (1, [0.1, 0.1, 0.1, 0.1]),
    (2, [0.2, 0.2, 0.2, 0.2]),
    (3, [0.3, 0.3, 0.3, 0.3]),
    (4, [0.4, 0.4, 0.4, 0.4]),
    (5, [0.5, 0.5, 0.5, 0.5]),
]
query = [0.3, 0.3, 0.3, 0.3]

db.execute("CREATE VIRTUAL TABLE vec_items USING vec0(embedding float[4])")

with db:
    for item in items:
        db.execute(
            "INSERT INTO vec_items(rowid, embedding) VALUES (?, ?)",
            [item[0], serialize_f32(item[1])],
        )

rows = db.execute(
    """
      SELECT
        rowid,
        distance
      FROM vec_items
      WHERE embedding MATCH ?
      ORDER BY distance
      LIMIT 3
    """,
    [serialize_f32(query)],
).fetchall()

print(rows)

代码运行的结果如下:

bash 复制代码
sqlite_version=3.45.3, vec_version=v0.1.6
[(3, 0.0), (4, 0.19999998807907104), (2, 0.20000001788139343)]

更多的介绍和示例可以参考网址:

https://alexgarcia.xyz/sqlite-vec/

另外,这个开源项目的作者还提供了两个用于生成文本嵌入(Text Embedding)的项目,配合 sqlite-vec 使用更加方便:

  • sqlite-rembed,基于远程 API(OpenAI、Nomic、Ollama 等)生成文本嵌入;
  • sqlite-lembed,基于 .gguf 格式的本地嵌入模型生成文本嵌入。
相关推荐
每日摸鱼大王2 分钟前
互联网摸鱼日报(2025-07-01)
人工智能
戒不掉的伤怀12 分钟前
【Navicat 连接MySQL时出现错误1251:客户端不支持服务器请求的身份验证协议;请考虑升级MySQL客户端】
服务器·数据库·mysql
GIS小天12 分钟前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年7月4日第128弹
人工智能·算法·机器学习·彩票
cv高级工程师YKY17 分钟前
服务器 - - QPS与TPS介绍
数据库
我是小哪吒2.023 分钟前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
nbsaas-boot25 分钟前
高可扩展属性建模设计:架构师的全局思考与落地方案
数据库
慕婉030727 分钟前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
爱上语文44 分钟前
Redis基础(5):Redis的Java客户端
java·开发语言·数据库·redis·后端
荔枝吻1 小时前
【AI总结】Git vs GitHub vs GitLab:深度解析三者联系与核心区别
人工智能·git·github
Jamie201901061 小时前
高档宠物食品对宠物的健康益处有哪些?
大数据·人工智能