Python 训练营打卡 Day 33-神经网络

简单神经网络的流程

1.数据预处理(归一化、转换成张量)

2.模型的定义

继承nn.Module类
定义每一个层
定义前向传播流程
3.定义损失函数和优化器

4.定义训练过程

5.可视化loss过程

预处理补充:
分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错
回归任务中,标签需转为float类型(如torch.float32)

数据的准备

以4特征,3分类的鸢尾花数据集作为我们今天的数据集
python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 打印下尺寸
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
python 复制代码
# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放

# 将数据转换为 PyTorch 张量,因为 PyTorch 使用张量进行训练
# y_train和y_test是整数,所以需要转化为long类型,如果是float32,会输出1.0 0.0
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)

模型架构定义

定义一个简单的全连接神经网络模型,包含一个输入层、一个隐藏层和一个输出层

定义层数+定义前向传播顺序

python 复制代码
class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Module
    def __init__(self): # 初始化函数
        super(MLP, self).__init__() # 调用父类的初始化函数
 # 前三行是八股文,后面的是自定义的

        self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层
        self.relu = nn.ReLU()
        self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率

    def forward(self, x):
        out = self.fc1(x)
        out = self.relu(out)
        out = self.fc2(out)
        return out

# 实例化模型
model = MLP()

这个网络结构非常简单:

输入层:4个特征

隐藏层:10个神经元,使用ReLU激活

输出层:3个神经元(适合3分类问题)

没有dropout或batch normalization等复杂结构,这是一个典型的前馈神经网络,适用于简单的分类或回归任务

模型训练

定义损失函数和优化器

python 复制代码
# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()

# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)

# # 使用自适应学习率的化器
# optimizer = optim.Adam(model.parameters(), lr=0.001)

使用交叉熵损失函数(CrossEntropyLoss),适用于多分类问题

会自动对输出进行softmax处理并计算损失

常用于分类任务,特别是当输出是类别概率时

使用随机梯度下降(SGD)优化器

优化对象是模型的所有可训练参数( model.parameters() )

学习率(lr)设置为0.01

这个配置是训练神经网络的标准设置:

交叉熵损失适用于分类任务

SGD是最基础的优化算法

学习率0.01是一个常用的初始值

循环训练

python 复制代码
# 训练模型
num_epochs = 20000 # 训练的轮数

# 用于存储每个 epoch 的损失值
losses = []

for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始
    # 前向传播
    outputs = model.forward(X_train)   # 显式调用forward函数
    # outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法
    loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签

    # 反向传播和优化
    optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsize
    loss.backward() # 反向传播计算梯度
    optimizer.step() # 更新参数

    # 记录损失值
    losses.append(loss.item())

    # 打印训练信息
    if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次
        print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')

可视化结果

python 复制代码
import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

@浙大疏锦行

相关推荐
Humbunklung4 小时前
Rust 控制流
开发语言·算法·rust
鑫鑫向栄4 小时前
[蓝桥杯]取球博弈
数据结构·c++·算法·职场和发展·蓝桥杯·动态规划
m0_634448895 小时前
从上下文学习和微调看语言模型的泛化:一项对照研究
学习·算法·语言模型
Once_day6 小时前
代码训练LeetCode(21)跳跃游戏2
算法·leetcode
Amo Xiang6 小时前
Python 解释器安装全攻略(适用于 Linux / Windows / macOS)
linux·windows·python·环境安装
程序员杰哥6 小时前
接口自动化测试之pytest 运行方式及前置后置封装
自动化测试·软件测试·python·测试工具·职场和发展·测试用例·pytest
浩皓素6 小时前
用Python开启游戏开发之旅
python
德先生&赛先生7 小时前
LeetCode-934. 最短的桥
算法·leetcode·职场和发展
hello kitty w7 小时前
Python学习(6) ----- Python2和Python3的区别
开发语言·python·学习