PyTorch——线性层及其他层介绍(6)


线性层

前面1,1,1是你想要的,后面我们不知道这个值是多少,取-1让Python自己计算


python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

# 加载CIFAR-10测试数据集并转换为Tensor格式
dataset = torchvision.datasets.CIFAR10("./data", train=False, transform=torchvision.transforms.ToTensor(),
                                       download=True)

# 创建数据加载器,每批次包含64个样本
dataloader = DataLoader(dataset, batch_size=64)

# 定义神经网络模型TY
class TY(nn.Module):
    def __init__(self):
        super(TY, self).__init__()
        # 定义全连接层:输入维度196608,输出维度10(对应10个类别)
        self.Linear1 = Linear(196608, 10)

    def forward(self, input):
        # 前向传播:将输入数据通过全连接层
        output = self.Linear1(input)
        return output

# 实例化模型
ty = TY()

# 遍历数据加载器中的每个批次
for data in dataloader:
    # 获取图像数据和对应的标签
    imgs, target = data
    # 打印原始图像张量形状:[批次大小, 通道数, 高度, 宽度]
    print(imgs.shape)
    
    # 将图像张量展平为一维向量
    # 注意:此处reshape参数(1,1,1,-1)会导致维度错误,正确应为(-1, 196608)
    output = torch.reshape(imgs, (1, 1, 1, -1))
    # 打印展平后的张量形状
    print(output.shape)
    
    # 将展平后的数据输入模型
    output = ty(output)
    # 打印模型输出形状:[批次大小, 类别数]
    print(output.shape)

另一种表达 flatten展平

python 复制代码
import torch
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset = torchvision.datasets.CIFAR10("./data",train=False,transform=torchvision.transforms.ToTensor(),
                                       download=True)

dataloader = DataLoader(dataset,batch_size=64)

class TY(nn.Module):
    def __init__(self):
        super(TY,self).__init__()
        self.Linear1 = Linear(196608,10)

    def forward(self,input):
        output = self.Linear1(input)
        return output

ty = TY()

for data in dataloader:
    imgs,target = data
    print(imgs.shape)
    output=torch.flatten(imgs)
    print(output.shape)
    output = ty(output)
    print(output.shape)
相关推荐
kkzhang13 小时前
Concept Bottleneck Models-概念瓶颈模型用于可解释决策:进展、分类体系 与未来方向综述
深度学习
阔皮大师14 小时前
INote轻量文本编辑器
java·javascript·python·c#
小法师爱分享14 小时前
StickyNotes,简单便签超实用
java·python
深蓝电商API14 小时前
处理字体反爬:woff字体文件解析实战
爬虫·python
开源技术14 小时前
Claude Opus 4.6 发布,100万上下文窗口,越贵越好用
人工智能·python
张3蜂14 小时前
深入理解 Python 的 frozenset:为什么要有“不可变集合”?
前端·python·spring
皮卡丘不断更14 小时前
手搓本地 RAG:我用 Python 和 Spring Boot 给 AI 装上了“实时代码监控”
人工智能·spring boot·python·ai编程
程序员打怪兽15 小时前
详解YOLOv8网络结构
人工智能·深度学习
爱打代码的小林15 小时前
基于 MediaPipe 实现实时面部关键点检测
python·opencv·计算机视觉
极客小云15 小时前
【ComfyUI API 自动化利器:comfyui_xy Python 库使用详解】
网络·python·自动化·comfyui