深度学习|pytorch基本运算-乘除法和幂运算

【1】引言

前序学习进程中,已经对pytorch张量数据的生成和广播做了详细探究,文章链接为:

深度学习|pytorch基本运算-CSDN博客

深度学习|pytorch基本运算-广播失效-CSDN博客

上述探索的内容还止步于张量的加减法,在此基础上,今天先一起探索张量的乘除法,然后是幂运算。

【2】乘除法

pytorch张量的乘除法运算使用的运算符分别是"*"和"/",乘除法与加减法运算一致,都是按照同一位置元素相互乘除的方式展开运算,代码有:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
# 乘法
a=y*z
print('a=',a)
# 除法
b=y/z
print('b=',b)

代码运行后的结果为:

++图1 pytorch张量对位乘除++

图1 现实的结果清楚表明:pytorch张量乘除运算时遵守对位法则,同一位置的元素相互乘除获得新张量。

【3】幂运算

pytorch幂运算作为乘除法的一种高阶运算,运算符是"**",遵循对位运算的基本法则,代码:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
# 幂运算
a=y**z
print('a=',a)

上述代码的运算结果为:

++图2 pytorch张量对位幂运算++

由图2所示的结果可以看出,pytorch幂运算严格遵守了张量对位运算的法则。

【4】幂运算的广播

当两个幂运算的pytorch张量大小不一致时,在允许广播的前提下,pytorch张量会自动广播然后开展运算,代码:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3],
    [2],
    [1]
])
#打印
print('y=',y)
print('z=',z)
# 幂运算
a=y**z
print('a=',a)

代码运算的结果为:

++图3 pytorch张量对位幂运算-广播效果++

对比图3和图2的运算效果,可见pytorch张量在完成广播运算后,保证张量各个元素均有对位元素,然后再执行了幂运算。

【5】总结

探索了pytorch张量的乘除法和幂运算,并对幂运算的广播效果进行了探究。

相关推荐
雅欣鱼子酱1 天前
USB Type-C PD取电(诱骗,诱电,SINK),筋膜枪专用取电芯片
网络·人工智能·芯片·电子元器件
kisshuan123961 天前
【深度学习】使用RetinaNet+X101-32x4d_FPN_GHM模型实现茶芽检测与识别_1
人工智能·深度学习
Learn Beyond Limits1 天前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅1 天前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
哥布林学者1 天前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (六)长短期记忆 LSTM
深度学习·ai
qq_356448371 天前
机器学习基本概念与梯度下降
人工智能
水如烟1 天前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
徐_长卿1 天前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——1 天前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人