深度学习|pytorch基本运算-乘除法和幂运算

【1】引言

前序学习进程中,已经对pytorch张量数据的生成和广播做了详细探究,文章链接为:

深度学习|pytorch基本运算-CSDN博客

深度学习|pytorch基本运算-广播失效-CSDN博客

上述探索的内容还止步于张量的加减法,在此基础上,今天先一起探索张量的乘除法,然后是幂运算。

【2】乘除法

pytorch张量的乘除法运算使用的运算符分别是"*"和"/",乘除法与加减法运算一致,都是按照同一位置元素相互乘除的方式展开运算,代码有:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
# 乘法
a=y*z
print('a=',a)
# 除法
b=y/z
print('b=',b)

代码运行后的结果为:

++图1 pytorch张量对位乘除++

图1 现实的结果清楚表明:pytorch张量乘除运算时遵守对位法则,同一位置的元素相互乘除获得新张量。

【3】幂运算

pytorch幂运算作为乘除法的一种高阶运算,运算符是"**",遵循对位运算的基本法则,代码:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3,3,3],
    [2,2,2],
    [1,1,1]
])
#打印
print('y=',y)
print('z=',z)
# 幂运算
a=y**z
print('a=',a)

上述代码的运算结果为:

++图2 pytorch张量对位幂运算++

由图2所示的结果可以看出,pytorch幂运算严格遵守了张量对位运算的法则。

【4】幂运算的广播

当两个幂运算的pytorch张量大小不一致时,在允许广播的前提下,pytorch张量会自动广播然后开展运算,代码:

python 复制代码
# 导入包
import torch
# 生成多维张量
y=torch.tensor([[1,2,3],
               [1,2,3],
                [1,2,3]])
z=torch.tensor([
    [3],
    [2],
    [1]
])
#打印
print('y=',y)
print('z=',z)
# 幂运算
a=y**z
print('a=',a)

代码运算的结果为:

++图3 pytorch张量对位幂运算-广播效果++

对比图3和图2的运算效果,可见pytorch张量在完成广播运算后,保证张量各个元素均有对位元素,然后再执行了幂运算。

【5】总结

探索了pytorch张量的乘除法和幂运算,并对幂运算的广播效果进行了探究。

相关推荐
陈奕昆2 分钟前
4.3 HarmonyOS NEXT AI驱动的交互创新:智能助手、实时语音与AR/MR开发实战
人工智能·交互·harmonyos
张较瘦_21 分钟前
[论文阅读] 人工智能 | 用大语言模型抓虫:如何让网络协议实现与RFC规范对齐
论文阅读·人工智能·语言模型
qb_jiajia26 分钟前
微软认证考试科目众多?该如何选择?
人工智能·microsoft·微软·云计算
pen-ai40 分钟前
【统计方法】蒙特卡洛
人工智能·机器学习·概率论
说私域1 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的生态农庄留存运营策略研究
人工智能·小程序·开源·零售
摘取一颗天上星️1 小时前
大模型微调技术全景图:从全量更新到参数高效适配
人工智能·深度学习·机器学习
要努力啊啊啊1 小时前
策略梯度核心:Advantage 与 GAE 原理详解
论文阅读·人工智能·深度学习·自然语言处理
AI航海家(Ethan)1 小时前
RAG技术解析:实现高精度大语言模型知识增强
人工智能·语言模型·自然语言处理
soldierluo1 小时前
AI基础知识(LLM、prompt、rag、embedding、rerank、mcp、agent、多模态)
人工智能·prompt·embedding
AWS官方合作商4 小时前
Amazon Augmented AI:人类智慧与AI协作,破解机器学习审核难题
人工智能·机器学习·aws