PostgreSQL的扩展 pg_buffercache

PostgreSQL的扩展 pg_buffercache

pg_buffercache 是 PostgreSQL 提供的一个关键性能监控扩展,用于观察共享缓冲区中的页面缓存情况。

一、扩展概述

  • 功能:实时查看共享缓冲区的使用情况
  • 用途
    • 性能分析与调优
    • 缓存命中率分析
    • 识别热点数据
    • 内存配置优化
  • 版本兼容:PostgreSQL 8.1+

二、安装与基本使用

1. 安装方法

sql 复制代码
CREATE EXTENSION pg_buffercache;

-- 验证安装
SELECT * FROM pg_available_extensions WHERE name = 'pg_buffercache';

2. 核心视图说明

sql 复制代码
-- 查看视图结构
\d pg_buffercache

-- 主要字段说明:
/*
bufferid    - 缓冲区ID
relfilenode - 关联的文件节点
reltablespace - 表空间OID
reldatabase - 数据库OID
relblocknumber - 块号
isdirty     - 是否为脏页
usagecount  - 使用计数(时钟算法)
pinning_backend - 钉住该缓冲区的后端PID
*/

三、关键查询示例

1. 查看缓存分布

sql 复制代码
SELECT 
  c.relname,
  count(*) AS buffers,
  round(100.0 * count(*) / (SELECT setting FROM pg_settings WHERE name='shared_buffers')::integer, 2) AS "% of cache"
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname
ORDER BY buffers DESC
LIMIT 10;

2. 识别热点表

sql 复制代码
SELECT 
  c.relname,
  b.usagecount,
  count(*) AS buffers
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname, b.usagecount
ORDER BY c.relname, b.usagecount;

3. 检查脏页情况

sql 复制代码
SELECT 
  c.relname,
  count(*) FILTER (WHERE b.isdirty) AS dirty_buffers,
  count(*) AS total_buffers
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname
HAVING count(*) FILTER (WHERE b.isdirty) > 0
ORDER BY dirty_buffers DESC;

四、高级分析技术

1. 缓存命中率计算

sql 复制代码
WITH cache_data AS (
  SELECT 
    c.relname,
    count(*) AS cached_blocks
  FROM pg_buffercache b
  JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
  GROUP BY c.relname
),
table_stats AS (
  SELECT 
    relname,
    heap_blks_read + heap_blks_hit AS total_read,
    heap_blks_hit AS hits
  FROM pg_statio_user_tables
)
SELECT 
  t.relname,
  t.hits,
  t.total_read,
  round(t.hits * 100.0 / NULLIF(t.total_read, 0), 2) AS hit_ratio,
  c.cached_blocks
FROM table_stats t
JOIN cache_data c ON t.relname = c.relname
ORDER BY t.total_read DESC;

2. 索引缓存效率分析

sql 复制代码
SELECT 
  c.relname AS index_name,
  count(*) AS cached_blocks,
  pg_size_pretty(count(*) * 8192) AS cached_size
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
WHERE c.relkind = 'i'
GROUP BY c.relname
ORDER BY cached_blocks DESC;

五、生产环境应用

1. 共享内存配置调优

sql 复制代码
-- 计算当前缓存利用率
SELECT 
  (SELECT setting FROM pg_settings WHERE name='shared_buffers')::int AS shared_buffers,
  count(*) AS used_buffers,
  round(count(*) * 100.0 / (SELECT setting FROM pg_settings WHERE name='shared_buffers')::int, 2) AS "% used"
FROM pg_buffercache;

-- 调整建议(需重启):
-- shared_buffers = 25% of total RAM (for dedicated DB servers)

2. 检查缓存竞争

sql 复制代码
SELECT 
  c.relname,
  count(DISTINCT b.pinning_backend) AS pinned_by,
  count(*) AS total_blocks
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
WHERE b.pinning_backend IS NOT NULL
GROUP BY c.relname
ORDER BY pinned_by DESC;

六、与其它工具集成

1. 结合pg_stat_statements

sql 复制代码
-- 找出高频查询访问的表
WITH top_tables AS (
  SELECT 
    query,
    (regexp_matches(query, 'FROM\s+(\w+)', 'gi'))[1] AS tablename
  FROM pg_stat_statements
  ORDER BY calls DESC
  LIMIT 10
)
SELECT 
  t.tablename,
  count(*) AS buffers,
  s.query
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
JOIN top_tables t ON c.relname = t.tablename
JOIN pg_stat_statements s ON t.query = s.query
GROUP BY t.tablename, s.query;

2. 导出缓存快照

bash 复制代码
# 生成缓存报告
psql -c "COPY (SELECT * FROM pg_buffercache) TO '/tmp/buffer_cache_snapshot.csv' WITH CSV HEADER"

七、性能注意事项

  1. 查询开销

    • pg_buffercache需要获取共享缓冲区锁
    • 生产环境避免高频查询(>1次/分钟)
    • 建议在维护窗口或低峰期执行
  2. 替代方案

    sql 复制代码
    -- 轻量级替代(不显示具体内容)
    SELECT * FROM pg_stat_bgwriter;
    
    -- 检查点活动监控
    SELECT * FROM pg_stat_checkpoints;

八、扩展限制

  1. 需要超级用户权限
  2. 仅显示当前数据库集群的缓存
  3. 不显示系统目录缓存细节(除非明确查询)
  4. 结果具有瞬时性,可能很快变化

pg_buffercache 是PostgreSQL性能调优的核心工具之一,合理使用可以帮助DBA优化内存配置、识别性能瓶颈,但需要注意查询本身对系统性能的影响。

更详细的内容请查看官方文档:

dart 复制代码
https://www.postgresql.org/docs/17/pgbuffercache.html
相关推荐
网硕互联的小客服3 分钟前
未来趋势:AI与量子计算对服务器安全的影响
运维·服务器·网络·网络安全·量子计算
GJCTYU6 分钟前
spring中@Transactional注解和事务的实战理解附代码
数据库·spring boot·后端·spring·oracle·mybatis
MicroTech20259 分钟前
微算法科技(NASDAQ: MLGO)探索Grover量子搜索算法,利用量子叠加和干涉原理,实现在无序数据库中快速定位目标信息的效果。
数据库·科技·算法
Code季风11 分钟前
SQL关键字快速入门:CASE 实现条件逻辑
javascript·数据库·sql
宇钶宇夕12 分钟前
STEP 7 MicroWIN SMART V2.2 的详细安装步骤及注意事项
运维·服务器·程序人生·自动化
weixin_4786897626 分钟前
操作系统【2】【内存管理】【虚拟内存】【参考小林code】
数据库·nosql
czhc11400756631 小时前
Linux 77 FTP
linux·运维·服务器
九皇叔叔1 小时前
【7】PostgreSQL 事务
数据库·postgresql
天若有情6731 小时前
【Linux】02_CentOS 7 开机运行级别详解:从基础概念到实战配置
linux·运维·centos
kk在加油1 小时前
Mysql锁机制与优化实践以及MVCC底层原理剖析
数据库·sql·mysql