Mnist手写数字

运行实现:

python 复制代码
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt


class Net(torch.nn.Module):#net类神经网络主体

    def __init__(self):#4个全链接层
        super().__init__()
        self.fc1 = torch.nn.Linear(28*28, 64)#输入为28*28尺寸图像
        self.fc2 = torch.nn.Linear(64, 64)#中间三层都是64个节点
        self.fc3 = torch.nn.Linear(64, 64)
        self.fc4 = torch.nn.Linear(64, 10)#输出为10个数字类别
    
    def forward(self, x):#前向传播
        x = torch.nn.functional.relu(self.fc1(x))#先全连接线性计算,再套上激活函数
        x = torch.nn.functional.relu(self.fc2(x))
        x = torch.nn.functional.relu(self.fc3(x))
        x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)#输出层用softmax做归一化,log_softmax是为了提高计算稳定性,套上了一个对数函数
        return x


def get_data_loader(is_train):#导入数据
    to_tensor = transforms.Compose([transforms.ToTensor()])#导入张量
    data_set = MNIST("", is_train, transform=to_tensor, download=True)#下载文件,""里面对应的是下载目录,is_train指定导入训练集还是测试集
    return DataLoader(data_set, batch_size=15, shuffle=True)#一个批次15张图片,shuffle=true说明数据是随机打乱的,返回数据加载器


def evaluate(test_data, net):#评估正确率
    n_correct = 0
    n_total = 0
    with torch.no_grad():
        for (x, y) in test_data:#取出数据
            outputs = net.forward(x.view(-1, 28*28))#计算神经网络预测值
            for i, output in enumerate(outputs):#作比较
                if torch.argmax(output) == y[i]:#argmax取最大预测概率的序号
                    n_correct += 1#累加正确的
                n_total += 1
    return n_correct / n_total


def main():

    train_data = get_data_loader(is_train=True)#训练集
    test_data = get_data_loader(is_train=False)#测试集
    net = Net()
    
    print("initial accuracy:", evaluate(test_data, net))#打印初始网络的正确率,接近0.1
    optimizer = torch.optim.Adam(net.parameters(), lr=0.001)#以下为pytorch固定写法
    for epoch in range(3):#epoch是轮次
        for (x, y) in train_data:
            net.zero_grad()#初始化
            output = net.forward(x.view(-1, 28*28))#正向传播
            loss = torch.nn.functional.nll_loss(output, y)#计算差值,null_loss对数损失函数,为了匹配前面log_softmax的对数运算
            loss.backward()#反向误差传播
            optimizer.step()#优化网络参数
        print("epoch", epoch, "accuracy:", evaluate(test_data, net))

    for (n, (x, _)) in enumerate(test_data):#抽取4张图像,显示预测结果
        if n > 3:
            break
        predict = torch.argmax(net.forward(x[0].view(-1, 28*28)))
        plt.figure(n)
        plt.imshow(x[0].view(28, 28),cmap='gray')
        plt.title("prediction: " + str(int(predict)))
    plt.show()


if __name__ == "__main__":
    main()

中间可能会报错误:(libiomp5md.dll问题)

python 复制代码
OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

这个处理就是在anaconda文件夹下面搜索libiomp5md.dll,那bin下面的 libiomp5md.dll文件全部修改命名,就像我这样,两个bin文件夹下面的都改了。

运行结果:

两轮精确度如下:

4个数字预测图片如下:

相关推荐
OLOLOadsd1233 分钟前
【深度学习】RetinaNet_RegNetX-800MF_FPN_1x_COCO_金属表面缺陷检测与分类模型解析
人工智能·深度学习·分类
查无此人byebye20 分钟前
阿里开源Wan2.2模型全面解析:MoE架构加持,电影级视频生成触手可及
人工智能·pytorch·python·深度学习·架构·开源·音视频
香芋Yu34 分钟前
【深度学习教程——】02_神经网络如何自动求导?反向传播的数学魔法
人工智能·深度学习·神经网络
沃达德软件36 分钟前
智慧警务技战法
大数据·数据仓库·hadoop·深度学习·机器学习·数据挖掘
Blossom.11838 分钟前
从单点工具到智能流水线:企业级多智能体AI开发工作流架构实战
人工智能·笔记·python·深度学习·神经网络·架构·whisper
AndrewHZ44 分钟前
【AI黑话日日新】什么是隐式CoT?
人工智能·深度学习·算法·llm·cot·复杂推理
All The Way North-13 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
童话名剑14 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh15 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
咚咚王者17 小时前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习