《Pytorch深度学习实践》ch8-多分类

------B站《刘二大人》

1.Softmax Layer

  • 在多分类问题中,输出的是每类的概率:
  • 计算公式:保证了每类概率大于 0 ,又由保证了概率之和为 1;
  • 举例如下:

2.Cross Entropy

  • 计算损失:
  • y = np.array([1, 0, 0]) :是目标标签的one-hot编码。假设有 3 个类别,这里表示正确的类别是第一个类别;
python 复制代码
import numpy as np
y = np.array([1, 0, 0])
z = np.array([0.2, 0.1, -0.1])
y_pred = np.exp(z) / np.exp(z).sum()
loss = (-y * np.log(y_pred)).sum()
print(loss) # 0.9729189131256584
  • 交叉熵损失函数:
  • y 是一个长度为 1 的长整型张量,是标签类别的 索引[0] 表示正确的类别是类别 0;
python 复制代码
import torch
y = torch.LongTensor([0])
z = torch.Tensor([[0.2, 0.1, -0.1]])
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(z, y)
print(loss) # tensor(0.9729)
  • Mini - Batch
python 复制代码
import torch
criterion = torch.nn.CrossEntropyLoss()
Y = torch.LongTensor([2, 0, 1])

Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],
                        [1.1, 0.1, 0.2],
                        [0.2, 2.1, 0.1]])
Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3],
                        [0.2, 0.3, 0.5],
                        [0.2, 0.2, 0.5]])

loss1 = criterion(Y_pred1, Y) # Batch Loss1 =  tensor(0.4966)
loss2 = criterion(Y_pred2, Y) # Batch Loss2 =  tensor(1.2389)
print('Batch Loss1 = ', loss1.data, '\nBatch Loss2 = ', loss2.data)

3.MNIST

  • 导包
python 复制代码
import torch
from torchvision import datasets
from torchvision import transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
  • 准备数据集
    • ToTensor():将图片转换为PyTorch的张量。
    • Normalize(mean, std):使用指定的均值和标准差对图片进行标准化。
python 复制代码
batch_size = 64

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307, ), (0.3081, ))
])

train_dataset = datasets.MNIST('data/MNIST/', train=True, transform=transform, download=True)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)

test_dataset = datasets.MNIST('data/MNIST/', train=False, transform=transform, download=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
  • 构造模型
    • 输入层:784个神经元(因为每张图片是28x28,展平后变成784维)。
    • 隐藏层:4个全连接层,神经元数量分别为512、256、128和64。
    • 输出层:10个神经元,分别对应数字0到9。
    • 最后一层不做激活,因为后面调用 torch.nn.CrossEntropyLoss。
python 复制代码
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.linear1 = torch.nn.Linear(784, 512)
        self.linear2 = torch.nn.Linear(512, 256)
        self.linear3 = torch.nn.Linear(256, 128)
        self.linear4 = torch.nn.Linear(128, 64)
        self.linear5 = torch.nn.Linear(64, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = F.relu(self.linear1(x))
        x = F.relu(self.linear2(x))
        x = F.relu(self.linear3(x))
        x = F.relu(self.linear4(x))
        x = self.linear5(x) # 不用激活函数,因为 torch.nn.CrossEntropyLoss = softmax + nllloss
        return x
    
model = Net()
  • 损失与优化器
python 复制代码
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
  • 训练与测试
    • torch.max:返回最大值和对应的下标。
    • dim=1,说明是在行的维度。 0是列,1是行。
python 复制代码
# training
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()

        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()

        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
            running_loss = 0.0

# test
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            inputs, labels = data
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        print('Accuracy on test set: %d %%' %(100*correct/total))


if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        if epoch % 10 == 0:
            test()
相关推荐
攻城狮7号几秒前
北京中小学打响第一枪:2025年9月开始实行AI通识课
人工智能·ai通识课
中杯可乐多加冰27 分钟前
【AI落地应用实战】AIGC赋能职场PPT汇报:从效率工具到辅助优化
人工智能·深度学习·神经网络·aigc·powerpoint·ai赋能
东临碣石8236 分钟前
【AI论文】BlenderFusion:基于三维场景的视觉编辑与生成式合成
人工智能
正在走向自律38 分钟前
第二章-AIGC入门-开启AIGC音频探索之旅:从入门到实践(6/36)
人工智能·aigc·音视频·语音识别·ai音乐·ai 音频·智能语音助手
Trent198544 分钟前
影楼精修-智能修图Agent
图像处理·人工智能·计算机视觉·aigc
烟锁池塘柳01 小时前
【大模型】解码策略:Greedy Search、Beam Search、Top-k/Top-p、Temperature Sampling等
人工智能·深度学习·机器学习
风逸hhh1 小时前
python打卡day58@浙大疏锦行
开发语言·python
盼小辉丶1 小时前
PyTorch实战(14)——条件生成对抗网络(conditional GAN,cGAN)
人工智能·pytorch·生成对抗网络
Allen_LVyingbo2 小时前
数智读书笔记系列035《未来医疗:医疗4.0引领第四次医疗产业变革》
人工智能·经验分享·笔记·健康医疗
zzc9212 小时前
时频图数据集更正程序,去除坐标轴白边及调整对应的标签值
人工智能·深度学习·数据集·标签·时频图·更正·白边