使用高斯朴素贝叶斯算法对鸢尾花数据集进行分类

高斯朴素贝叶斯算法通常用于特征变量是连续变量,符合高素分布的情况。

使用高斯朴素贝叶斯算法对鸢尾花数据集进行分类

"""

使用高斯贝叶斯堆鸢尾花进行分类

"""

#导入需要的库

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

#导入数据

x,y = load_iris().data,load_iris().target

#划分数据集

x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=1, test_size=50)

#定义和训练模型

model = GaussianNB()

model.fit(x_train,y_train)

#模型评估

pred = model.predict(x_test)

print("测试集数据的预测标签为",pred)

print("测试集数据的真实标签为",y_test)

print("测试集共有%d条数据,其中预测错误的数据有%d条,预测准确率为%.2f"%(x_test.shape[0],(pred!=y_test).sum(),

accuracy_score(y_test,pred)))

输出的结果为:

测试集数据的预测标签为 [0 1 1 0 2 2 2 0 0 2 1 0 2 1 1 0 1 1 0 0 1 1 2 0 2 1 0 0 1 2 1 2 1 2 2 0 1

0 1 2 2 0 1 2 1 2 0 0 0 1]

测试集数据的真实标签为 [0 1 1 0 2 1 2 0 0 2 1 0 2 1 1 0 1 1 0 0 1 1 1 0 2 1 0 0 1 2 1 2 1 2 2 0 1

0 1 2 2 0 2 2 1 2 0 0 0 1]

测试集共有50条数据,其中预测错误的数据有3条,预测准确率为0.94

相关推荐
水木兰亭39 分钟前
数据结构之——树及树的存储
数据结构·c++·学习·算法
学技术的大胜嗷1 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手1 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
Jess071 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁2 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu2 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu2 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划
ysa0510302 小时前
Dijkstra 算法#图论
数据结构·算法·图论
一定要AK3 小时前
2025—暑期训练一
算法
一定要AK3 小时前
贪心专题练习
算法