使用高斯朴素贝叶斯算法对鸢尾花数据集进行分类

高斯朴素贝叶斯算法通常用于特征变量是连续变量,符合高素分布的情况。

使用高斯朴素贝叶斯算法对鸢尾花数据集进行分类

"""

使用高斯贝叶斯堆鸢尾花进行分类

"""

#导入需要的库

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB

from sklearn.metrics import accuracy_score

#导入数据

x,y = load_iris().data,load_iris().target

#划分数据集

x_train,x_test,y_train,y_test = train_test_split(x,y,random_state=1, test_size=50)

#定义和训练模型

model = GaussianNB()

model.fit(x_train,y_train)

#模型评估

pred = model.predict(x_test)

print("测试集数据的预测标签为",pred)

print("测试集数据的真实标签为",y_test)

print("测试集共有%d条数据,其中预测错误的数据有%d条,预测准确率为%.2f"%(x_test.shape[0],(pred!=y_test).sum(),

accuracy_score(y_test,pred)))

输出的结果为:

测试集数据的预测标签为 [0 1 1 0 2 2 2 0 0 2 1 0 2 1 1 0 1 1 0 0 1 1 2 0 2 1 0 0 1 2 1 2 1 2 2 0 1

0 1 2 2 0 1 2 1 2 0 0 0 1]

测试集数据的真实标签为 [0 1 1 0 2 1 2 0 0 2 1 0 2 1 1 0 1 1 0 0 1 1 1 0 2 1 0 0 1 2 1 2 1 2 2 0 1

0 1 2 2 0 2 2 1 2 0 0 0 1]

测试集共有50条数据,其中预测错误的数据有3条,预测准确率为0.94

相关推荐
爱笑的眼睛1124 分钟前
PyTorch Lightning:重新定义深度学习工程实践
java·人工智能·python·ai
稚辉君.MCA_P8_Java1 小时前
Gemini永久会员 Java实现的暴力递归版本
java·数据结构·算法
Jay20021111 小时前
【机器学习】10 正则化 - 减小过拟合
人工智能·机器学习
冯诺依曼的锦鲤1 小时前
算法练习:差分
c++·学习·算法
rgb2gray2 小时前
增强城市数据分析:多密度区域的自适应分区框架
大数据·python·机器学习·语言模型·数据挖掘·数据分析·llm
有意义2 小时前
栈数据结构全解析:从实现原理到 LeetCode 实战
javascript·算法·编程语言
鹿鹿鹿鹿isNotDefined2 小时前
逐步手写,实现符合 Promise A+ 规范的 Promise
前端·javascript·算法
封奚泽优2 小时前
下降算法(Python实现)
开发语言·python·算法
im_AMBER2 小时前
算法笔记 16 二分搜索算法
c++·笔记·学习·算法
高洁012 小时前
【无标具身智能-多任务与元学习】
神经网络·算法·aigc·transformer·知识图谱