PyTorch——非线性激活(5)

非线性激活函数的作用是让神经网络能够理解更复杂的模式和规律。如果没有非线性激活函数,神经网络就只能进行简单的加法和乘法运算,没法处理复杂的问题。

非线性变化的目的就是给我们的网络当中引入一些非线性特征


Relu 激活函数


Relu处理图像

python 复制代码
# 导入必要的库
from os import close
import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 加载CIFAR-10测试数据集,将图像转换为Tensor格式
dataset = torchvision.datasets.CIFAR10("./data", train=False, download=True,
                                       transform=torchvision.transforms.ToTensor())

# 创建数据加载器,设置批量大小为64
dataloader = DataLoader(dataset, batch_size=64)

# 定义神经网络模型TY
class TY(nn.Module):
    def __init__(self):
        super(TY, self).__init__()
        # 定义ReLU激活函数层
        self.relu1 = ReLU()
        # 定义Sigmoid激活函数层(当前未在forward中使用)
        self.sigmod1 = Sigmoid()

    def forward(self, input):
        # 前向传播过程,对输入数据应用ReLU激活函数
        output = self.relu1(input)
        return output

# 实例化模型
ty = TY()

# 创建TensorBoard写入器,用于可视化数据
writer = SummaryWriter("./logs_relu")

# 初始化步数计数器
step = 0
# 遍历数据加载器中的每个批次
for data in dataloader:
    # 获取图像数据和对应的标签
    imgs, target = data
    # 向TensorBoard添加原始输入图像
    writer.add_images("input", imgs, step)
    # 将图像数据输入模型,得到经过ReLU处理后的输出
    output = ty(imgs)
    # 向TensorBoard添加处理后的输出图像
    writer.add_images("output", output, step)
    # 步数计数器递增
    step += 1

# 关闭TensorBoard写入器,释放资源
writer.close()

ReLU处理图像,效果不是很明显


Sigmoid激活函数

python 复制代码
from os import close
import torch
import torchvision.datasets
from torch import nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset = torchvision.datasets.CIFAR10("./data",train=False,download=True,
                                       transform=torchvision.transforms.ToTensor())

dataloader = DataLoader(dataset,batch_size=64)

class TY(nn.Module):
    def __init__(self):
        super(TY,self).__init__()
        self.relu1=ReLU()
        self.sigmoid1 = Sigmoid()

    def forward(self,input):
        output = self.sigmoid1(input)
        return output

ty = TY()

writer = SummaryWriter("./logs_relu")

step = 0
for data in dataloader:
    imgs,target=data
    writer.add_images("input",imgs,step)
    output = ty(imgs)
    writer.add_images("output",output,step)
    step+=1

writer.close()
相关推荐
元智启几秒前
企业AI应用面临“敏捷响应”难题:快速变化的业务与相对滞后的智能如何同步?
人工智能·深度学习·机器学习
ISACA中国26 分钟前
2026年网络安全与AI趋势预测
人工智能·安全·web安全
lambo mercy36 分钟前
自回归生成任务
人工智能·数据挖掘·回归
5Gcamera42 分钟前
边缘计算视频分析智能AI盒子使用说明
人工智能·音视频·边缘计算
hg01181 小时前
埃及:在变局中重塑发展韧性
大数据·人工智能·物联网
线束线缆组件品替网1 小时前
IO Audio Technologies 音频线缆抗干扰与带宽设计要点
网络·人工智能·汽车·电脑·音视频·材料工程
nimadan121 小时前
**手机小说扫榜工具2025推荐,精准追踪榜单动态与题材风向
python·智能手机
编程武士1 小时前
Python 各版本主要变化速览
开发语言·python
Hcoco_me1 小时前
大模型面试题63:介绍一下RLHF
人工智能·深度学习·机器学习·chatgpt·机器人
傻啦嘿哟1 小时前
Python中的@property:优雅控制类成员访问的魔法
前端·数据库·python