大数据Spark(六十一):Spark基于Standalone提交任务流程

文章目录

Spark基于Standalone提交任务流程

一、Standalone-Client模式

1、提交命令

2、任务执行流程

二、Standalone-Cluster模式

1、提交命令

2、任务执行流程


Spark基于Standalone提交任务流程

在Standalone模式下,Spark的任务提交根据Driver程序运行的位置不同,分为client和cluster两种模式。在这两种模式中,Driver负责应用程序的资源申请、任务分发、结果回收以及监控任务执行。以下分别介绍Client和Cluster模式。

一、Standalone-Client模式

1、提交命令

在启动Standalone集群后,可在node4节点上执行以下命令以Client模式提交任务

bash 复制代码
[root@node4 ~]# cd /software/spark-3.5.5/bin/
#第一种方式
[root@node4 bin]# ./spark-submit --master spark://node1:7077 --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.13-3.5.5.jar 1000

#第二种方式
[root@node4 bin]# ./spark-submit --master spark://node1:7077 --deploy-mode client --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.13-3.5.5.jar 1000

以上命令中注意如下几点:

  • "--master"参数指定Applicatin的Master URL,即运行模式;"--deploy-mode"参数指定Driver程序的部署模式,可选Client/Cluster,默认为Client;"--class"参数指定Application的主类。
  • 两种提交方式的区别在于是否显式指定--deploy-mode参数,该参数默认为client模式,因此可以省略。
  • 任务提交后,可以在客户端看到"SparkSubmit"进程,该进程可以看做为Driver进程;在Standalone集群Worker节点可以看到"CoarseGrainedExecutorBackend"进程,该进程为Executor进程,负责执行Task。

2、任务执行流程

Standalone Client模式提交任务流程如下图所示:

  1. Standalone集群启动后,Worker向Master汇报资源,Master掌握集群资源。

  2. 客户端使用spark-sumbmit提交任务,Driver在客户端启动。

  3. Driver向Master申请启动Application所需的资源。

  4. Master收到请求之后会在相应的Worker节点上启动Executor进程。

  5. Executor启动后,向Driver注册,Driver掌握一批计算资源。

  6. Driver将task分发到Executor执行,Executor将task执行结果返回给Driver。

总结:在Standalone-Client模式中,Driver进程在提交Application的客户端节点上启动,客户端可以查看任务的执行情况和结果。此模式适用于测试环境,不建议用于生产环境。原因在于,当客户端提交大量Application时,所有Driver都在客户端启动,Driver与集群之间存在大量通信,可能导致客户端网络流量激增。

二、Standalone-Cluster模式

1、提交命令

在启动Standalone集群后,可在node4节点上执行以下命令以Cluster模式提交任务:

bash 复制代码
[root@node4 ~]# cd /software/spark-3.5.5/bin/
[root@node4 bin]# ./spark-submit --master spark://node1:7077 --deploy-mode cluster --class org.apache.spark.examples.SparkPi ../examples/jars/spark-examples_2.13-3.5.5.jar 1000

需要注意:

  • "--master"参数指定Application的Master URL,即运行模式;"--deploy-mode"参数指定Driver程序的部署模式,可选Client或Cluster,默认为Client;"--class"参数指定Application的主类。
  • 任务提交后,可以在Worker节点上看到"DriverWrapper"(Driver进程)和"CoarseGrainedExecutorBackend"(Executor进程)。
  • 在Standalone-Cluster模式下,任务提交后,客户端无法直接查看任务结果,需要通过Web UI查看Driver的日志以获取结果。

2、任务执行流程

Standalone Cluster模式提交任务流程如下图所示:

  1. Standalone集群启动,Worker向Master汇报资源,Master掌握集群资源状况。

  2. 客户端使用 spark-submit 提交应用程序后,向 Master 请求启动 Driver。

  3. Master 接受请求,在集群中的某个 Worker 节点上启动 Driver 进程。

  4. Driver 启动后,向Master申请启动Application所需的资源。

  5. Master收到请求之后,在相应的Worker节点上启动Executor进程。

  6. Executor启动后,向Driver注册,Driver掌握一批计算资源。

  7. Driver将task分发到Executor执行,Executor将task执行结果返回给Driver。

总结:在Standalone-Cluster模式中,Driver进程在集群的某个Worker节点上启动,客户端无法直接查看任务的执行结果,需要通过集群的Web UI查看日志获取结果。此模式适用于生产环境,因为每个Application的Driver会随机在集群中的某个Worker上启动,避免了Client模式下客户端网络流量激增的问题。


  • 📢博客主页:https://lansonli.blog.csdn.net
  • 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
  • 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
  • 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
相关推荐
练习两年半的工程师1 小时前
金融科技中的跨境支付、Open API、数字产品服务开发、变革管理
大数据·科技·金融
久念祈3 小时前
C++ - 仿 RabbitMQ 实现消息队列--服务端核心模块实现(四)
分布式·rabbitmq
MQ_SOFTWARE7 小时前
文件权限标记机制在知识安全共享中的应用实践
大数据·网络
白鹭8 小时前
基于LNMP架构的分布式个人博客搭建
linux·运维·服务器·网络·分布式·apache
不辉放弃8 小时前
kafka的消费者负载均衡机制
数据库·分布式·kafka·负载均衡
花下的晚风9 小时前
模拟flink处理无限数据流
大数据·flink
小悟空9 小时前
[AI 生成] Flink 面试题
大数据·面试·flink
livemetee9 小时前
Flink2.0学习笔记:Stream API 常用转换算子
大数据·学习·flink
AutoMQ10 小时前
技术干货|为什么越来越多企业放弃 Flink/Spark,用 AutoMQ 替代传统 ETL?
大数据
java叶新东老师10 小时前
三、搭建springCloudAlibaba2021.1版本分布式微服务-springcloud loadbalancer负载均衡
分布式·spring cloud·微服务