LangChain in java

LangChain is primarily a Python and JavaScript/TypeScript project, but there are Java alternatives and integrations that allow similar capabilities.

If you're looking for LangChain-like functionality in Java, here's a practical overview:


🔧 1. Use LangChain4j (LangChain for Java)

LangChain4j is the official LangChain-style library for Java, maintained by the LangChain ecosystem.

✨ Features:

  • Prompt templating

  • Memory

  • LLM integrations (OpenAI, Azure, Hugging Face, Ollama, etc.)

  • Tools and Chains

  • Retrieval Augmented Generation (RAG)


✅ Example (LangChain4j)

1. Add Maven Dependency

复制代码
<dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j</artifactId>
    <version>0.26.0</version>
</dependency>

Versions change frequently. Always check: Maven Central Repository Search


2. Basic Chat Example (OpenAI)

复制代码
import dev.langchain4j.model.openai.OpenAiChatModel;
import dev.langchain4j.service.SystemMessage;
import dev.langchain4j.service.UserMessage;
import dev.langchain4j.service.AiService;

public class LangChain4jExample {

    interface Assistant {
        @SystemMessage("You are a helpful assistant.")
        String chat(@UserMessage String message);
    }

    public static void main(String[] args) {
        var model = OpenAiChatModel.withApiKey("YOUR_OPENAI_API_KEY");

        Assistant assistant = AiService.create(Assistant.class, model);
        String response = assistant.chat("What is the capital of France?");
        System.out.println(response);
    }
}

3. File or Document Q&A (RAG)

You can load PDF/text/CSV files and use embeddings + vector stores (like FAISS, Chroma, or Redis) for semantic search.

LangChain4j supports:

  • Embedding models (OpenAI, HuggingFace)

  • Vector stores (in-memory, Redis, Qdrant)


🚀 Summary

Feature Support in Java
Prompt templating ✅ LangChain4j
Chains and tools ✅ LangChain4j
Memory support ✅ LangChain4j
Vector store + RAG ✅ LangChain4j
OpenAI/LLM support ✅ LangChain4j
Ollama/Local model ✅ via REST
相关推荐
JH30736 小时前
SpringBoot 优雅处理金额格式化:拦截器+自定义注解方案
java·spring boot·spring
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
invicinble7 小时前
对tomcat的提供的功能与底层拓扑结构与实现机制的理解
java·tomcat
较真的菜鸟8 小时前
使用ASM和agent监控属性变化
java
黎雁·泠崖8 小时前
【魔法森林冒险】5/14 Allen类(三):任务进度与状态管理
java·开发语言
NEXT068 小时前
AI 应用工程化实战:使用 LangChain.js 编排 DeepSeek 复杂工作流
前端·javascript·langchain
qq_12498707539 小时前
基于SSM的动物保护系统的设计与实现(源码+论文+部署+安装)
java·数据库·spring boot·毕业设计·ssm·计算机毕业设计
Coder_Boy_9 小时前
基于SpringAI的在线考试系统-考试系统开发流程案例
java·数据库·人工智能·spring boot·后端
Mr_sun.9 小时前
Day06——权限认证-项目集成
java
瑶山9 小时前
Spring Cloud微服务搭建四、集成RocketMQ消息队列
java·spring cloud·微服务·rocketmq·dashboard