如何在 PyTorch 中自定义卷积核参数(亲测,已解决)

先说一下整体 流程

1.设置环境和导入库

首先,我们需要确保安装了 PyTorch,并导入必要的库

导入 PyTorch 和其他必备的库

复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

导入 PyTorch 库以及神经网络模块 nn 和函数模块 F。

2.创建一个自定义的卷积层

接下来,我们将定义一个自定义卷积层,继承自nn.Module

复制代码
#自定义卷积层
class CustomCovlayer(nn.Module):
    def __init__(self,in_channels, out_channels, kernel_size):
        super(CustomCovlayer,self).__init__()
        #初始化卷积层
        self.conv = nn.Conv2d(in_channels,out_channels,kernel_size)
    def forward(self,x):
        # 前向传播
        return self.conv(x)

这里我们创建了一个名为 CustomconvLayer 的卷积层。init方法中创建一个 Conv2d 对象,forward 方法定义了输入数据如何通过卷积层。

3.手动初始化卷积核参数

现在需要手动设置卷积核的参数。

并组成完整网络

复制代码
#自定义卷积层
class CustomCovlayer(nn.Module):
    def __init__(self,in_channels, out_channels, kernel_size):
        super(CustomCovlayer,self).__init__()
        #初始化卷积层
        self.conv = nn.Conv2d(in_channels,out_channels,kernel_size)
        # 在初始化方法中,调用自定义初始化函数
        self.init_weights()
    def forward(self,x):
        # 前向传播
        return self.conv(x)
    def init_weights(self):
        # 初始化卷积核为自定义值
        with torch.no_grad():
            self.conv.weight = nn.Parameter(torch.tensor([[[[1.0,0.0,-1.0],
                                                           [1.0,0.0,-1.0],
                                                           [1.0,0.0,-1.0]
                                                            ]]]))
    def forward(self,x):
        # 前向传播
        return self.conv(x)

5.测试自定义卷积层

创建一些假的图像数据来测试自定义卷积层。

复制代码
conv_layer = CustomConvlayer(in_channels=1,out_channels=1,kernel_size=1)

#创建数据,形状为(batch_size,channels, height,width)
input_data = torch.tensor([[[[1.0,2.0,3.0],
                             [0.0,1.0,0.0],
                             [1.0,2.0,3.0]]]])
# 前向传播测试
output = conv_layer(input_data)

#打印输出
print(output)

输出结果:

欢迎点赞 收藏 加 关注

相关推荐
zhangfeng113317 小时前
大模型微调时 Firefly(流萤)和 LlamaFactory(LLaMA Factory)这两个工具/框架之间做出合适的选择
人工智能·llama
zhangyifang_00917 小时前
MCP——AI连接现实世界的“标准接口”
人工智能
Stream_Silver18 小时前
【Agent学习笔记3:使用Python开发简单MCP服务】
笔记·python
LOnghas121118 小时前
电动汽车充电接口自动识别与定位_yolo13-C3k2-Converse_六种主流充电接口检测分类
人工智能·目标跟踪·分类
编码小哥18 小时前
OpenCV图像滤波技术详解:从均值滤波到双边滤波
人工智能·opencv·均值算法
穿过锁扣的风18 小时前
零基础入门 Python 爬虫:从基础到实战,爬取虎扑 / 豆瓣 / 图片全掌握
开发语言·爬虫·python
阿杰学AI18 小时前
AI核心知识78——大语言模型之CLM(简洁且通俗易懂版)
人工智能·算法·ai·语言模型·rag·clm·语境化语言模型
Stream_Silver18 小时前
【Agent学习笔记2:深入理解Function Calling技术:从原理到实践】
笔记·python
新缸中之脑18 小时前
氛围编程一个全栈AI交易应用
人工智能
码云数智-大飞18 小时前
Oracle RAS:AI时代守护企业数据安全的智能盾牌
数据库·人工智能·oracle