如何在 PyTorch 中自定义卷积核参数(亲测,已解决)

先说一下整体 流程

1.设置环境和导入库

首先,我们需要确保安装了 PyTorch,并导入必要的库

导入 PyTorch 和其他必备的库

复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

导入 PyTorch 库以及神经网络模块 nn 和函数模块 F。

2.创建一个自定义的卷积层

接下来,我们将定义一个自定义卷积层,继承自nn.Module

复制代码
#自定义卷积层
class CustomCovlayer(nn.Module):
    def __init__(self,in_channels, out_channels, kernel_size):
        super(CustomCovlayer,self).__init__()
        #初始化卷积层
        self.conv = nn.Conv2d(in_channels,out_channels,kernel_size)
    def forward(self,x):
        # 前向传播
        return self.conv(x)

这里我们创建了一个名为 CustomconvLayer 的卷积层。init方法中创建一个 Conv2d 对象,forward 方法定义了输入数据如何通过卷积层。

3.手动初始化卷积核参数

现在需要手动设置卷积核的参数。

并组成完整网络

复制代码
#自定义卷积层
class CustomCovlayer(nn.Module):
    def __init__(self,in_channels, out_channels, kernel_size):
        super(CustomCovlayer,self).__init__()
        #初始化卷积层
        self.conv = nn.Conv2d(in_channels,out_channels,kernel_size)
        # 在初始化方法中,调用自定义初始化函数
        self.init_weights()
    def forward(self,x):
        # 前向传播
        return self.conv(x)
    def init_weights(self):
        # 初始化卷积核为自定义值
        with torch.no_grad():
            self.conv.weight = nn.Parameter(torch.tensor([[[[1.0,0.0,-1.0],
                                                           [1.0,0.0,-1.0],
                                                           [1.0,0.0,-1.0]
                                                            ]]]))
    def forward(self,x):
        # 前向传播
        return self.conv(x)

5.测试自定义卷积层

创建一些假的图像数据来测试自定义卷积层。

复制代码
conv_layer = CustomConvlayer(in_channels=1,out_channels=1,kernel_size=1)

#创建数据,形状为(batch_size,channels, height,width)
input_data = torch.tensor([[[[1.0,2.0,3.0],
                             [0.0,1.0,0.0],
                             [1.0,2.0,3.0]]]])
# 前向传播测试
output = conv_layer(input_data)

#打印输出
print(output)

输出结果:

欢迎点赞 收藏 加 关注

相关推荐
天涯海风28 分钟前
检索增强生成(RAG) 缓存增强生成(CAG) 生成中检索(RICHES) 知识库增强语言模型(KBLAM)
人工智能·缓存·语言模型
lxmyzzs2 小时前
基于深度学习CenterPoint的3D目标检测部署实战
人工智能·深度学习·目标检测·自动驾驶·ros·激光雷达·3d目标检测
跟着珅聪学java2 小时前
Apache OpenNLP简介
人工智能·知识图谱
AwhiteV3 小时前
利用图数据库高效解决 Text2sql 任务中表结构复杂时占用过多大模型上下文的问题
数据库·人工智能·自然语言处理·oracle·大模型·text2sql
念念01073 小时前
数学建模竞赛中评价类相关模型
python·数学建模·因子分析·topsis
Black_Rock_br3 小时前
AI on Mac, Your Way!全本地化智能代理,隐私与性能兼得
人工智能·macos
云天徽上3 小时前
【数据可视化-94】2025 亚洲杯总决赛数据可视化分析:澳大利亚队 vs 中国队
python·信息可视化·数据挖掘·数据分析·数据可视化·pyecharts
☺����3 小时前
实现自己的AI视频监控系统-第一章-视频拉流与解码2
开发语言·人工智能·python·音视频
fsnine4 小时前
机器学习——数据清洗
人工智能·机器学习
王者鳜錸4 小时前
PYTHON让繁琐的工作自动化-函数
开发语言·python·自动化