论文笔记:Large Language Models for Next Point-of-Interest Recommendation

SIGIR 2024

1 intro

  • 传统的基于数值的POI推荐方法在处理上下文信息时存在两个主要限制
    • 需要将异构的LBSN数据转换为数字,这可能导致上下文信息的固有含义丢失
    • 仅依赖于统计和人为设计来理解上下文信息,缺乏对上下文信息提供的语义概念的理解
  • ------>使用预训练的大语言模型来进行推荐
    • 允许在原始格式下保留异构的LBSN数据,从而避免上下文信息的丢失
    • 能够通过包含常识知识来理解上下文信息的内在含义

2 方法

2.1 轨迹提示

  • 当前轨迹块(current trajectory block)

    • 当前轨迹块中只包含当前用户的一条轨迹,且不含最后一个签到点
  • 历史轨迹块(historical trajectory block)

    • 在当前轨迹块和历史轨迹块中,为每条签到记录生成一个句子

      • 对每条签到记录 𝑞 = (𝑢,𝑝,𝑐,𝑡,𝑔),构造句子为:

        • 在 [time],用户 [user id] 访问了 POI 编号 [poi id],该地点属于 [poi category name] 类别,其类别 ID 为 [category id]。

        • 为节省 token 数量,没有将地理坐标(geo-coordinates)包含在句子中

        • 同时论文发现,未经特别地图数据微调的 LLM 无法很好地理解坐标信息

    • 历史轨迹块则可以包含来自当前用户及其他行为相似用户的多条轨迹,以应对轨迹短和冷启动问题

  • 指令块(instruction block)

    • 指令块用于引导模型关注目标任务,并提醒 POI ID 的取值范围
  • 目标块(target block)

    • 目标块用于微调和评估阶段,包含要预测的签到记录(时间戳、用户 ID、POI ID),但在推理阶段不会作为输入

    • 作者尝试将 POI 类别信息加入指令块和目标块,希望模型更关注 POI ID 与类别之间的关系,但实验显示效果提升不明显,可能模型已隐式学会这种关系。

2.2 键-查询对相似性计算

  • 为了从用户历史轨迹及其他用户轨迹中挖掘行为模式,提出了适用于自然语言轨迹格式的键-查询对相似度计算框架
    • 当前轨迹块中的轨迹被视为Key
    • 所有结束时间早于该 Key 的轨迹被视为Query
  • 计算所有 Key-Query 对的相似度,并从中选出与 Key 相似度较高的 Query,将其用于生成历史轨迹块内容
    • 每个 Key 和 Query prompt 输入到 LLM 编码器中,提取最后一层的表示向量
    • 对每组 Key 和 Query 计算余弦相似度,提取最高的top-k个Query

2.3 监督微调

在训练集中,将提示中的 <question> 部分送入预训练 LLM,而 <answer> 部分作为监督信号进行微调

LoRA+NormalFloat 4-bit量化+FlashAttention

3 实验

相关推荐
AI科技星3 分钟前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
hkNaruto4 分钟前
【AI】AI学习笔记:OpenAI Tools完全指南:从原理到实战入门
人工智能·笔记·学习
狮子座明仔7 分钟前
MiMo-V2-Flash 深度解读:小米 309B 开源 MoE 模型如何用 15B 激活参数吊打 671B 巨头?
人工智能·语言模型·自然语言处理
紧固件研究社8 分钟前
从标准件到复杂异形件,紧固件设备如何赋能制造升级
人工智能·制造·紧固件
木头左9 分钟前
贝叶斯深度学习在指数期权风险价值VaR估计中的实现与应用
人工智能·深度学习
反向跟单策略9 分钟前
期货反向跟单—高频换人能够提高跟单效率?
大数据·人工智能·学习·数据分析·区块链
哎吆我呸10 分钟前
Android studio 安装Claude Code GUI 插件报错无法找到Node.js解决方案
人工智能
咕噜企业分发小米11 分钟前
独立IP服务器有哪些常见的应用场景?
人工智能·阿里云·云计算
测试者家园16 分钟前
AI 智能体如何构建模拟真实用户行为的复杂负载场景?
人工智能·压力测试·性能测试·智能体·用户行为·智能化测试·软件开发和测试
MF_AI16 分钟前
苹果病害检测识别数据集:1w+图像,5类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉