打卡day52

简单cnn 借助调参指南进一步提高精度

基础CNN模型代码

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical

# 加载数据
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()

# 数据预处理
train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# 基础CNN模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, 
                    epochs=10, 
                    batch_size=64,
                    validation_data=(test_images, test_labels))

改进方法

增加模型复杂度

python 复制代码
model = models.Sequential([
    layers.Conv2D(64, (3, 3), activation='relu', input_shape=(32, 32, 3), padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.5),
    layers.Dense(10, activation='softmax')
])

优化器调参

python 复制代码
from tensorflow.keras.optimizers import Adam

optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
model.compile(optimizer=optimizer,
              loss='categorical_crossentropy',
              metrics=['accuracy'])

数据增强

python 复制代码
from tensorflow.keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
    rotation_range=15,
    width_shift_range=0.1,
    height_shift_range=0.1,
    horizontal_flip=True,
    zoom_range=0.1
)
datagen.fit(train_images)

history = model.fit(datagen.flow(train_images, train_labels, batch_size=64),
                    epochs=50,
                    validation_data=(test_images, test_labels))

早停和模型检查点

python 复制代码
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

callbacks = [
    EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True),
    ModelCheckpoint('best_model.h5', monitor='val_accuracy', save_best_only=True)
]

history = model.fit(..., callbacks=callbacks, epochs=100)
相关推荐
旧时光巷19 分钟前
【Flask 基础 ①】 | 路由、参数与模板渲染
后端·python·零基础·flask·web·模板渲染·路由系统
Ronin-Lotus27 分钟前
深度学习篇---PaddleDetection模型选择
人工智能·深度学习
java1234_小锋28 分钟前
【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博评论IP地图可视化分析实现
python·自然语言处理·flask
Blossom.11836 分钟前
基于深度学习的医学图像分析:使用CycleGAN实现图像到图像的转换
人工智能·深度学习·目标检测·机器学习·分类·数据挖掘·语音识别
golitter.42 分钟前
python的异步、并发开发
开发语言·python
陈敬雷-充电了么-CEO兼CTO1 小时前
强化学习三巨头PK:PPO、GRPO、DPO谁是大模型训练的「王炸」?
人工智能·python·机器学习·chatgpt·aigc·ppo·grpo
SiYuanFeng2 小时前
【问题未解决-寻求帮助】VS Code 中使用 Conda 环境,运行 Python 后 PowerShell 终端输出内容立即消失
开发语言·python·conda
段ヤシ.2 小时前
Windows环境下安装Python和PyCharm
开发语言·python·pycharm
测试19984 小时前
Newman+Jenkins实施接口自动化测试
自动化测试·软件测试·python·测试工具·职场和发展·jenkins·测试用例
feuiw4 小时前
django-3模型操作
python·django