打卡day52

简单cnn 借助调参指南进一步提高精度

基础CNN模型代码

python 复制代码
import tensorflow as tf
from tensorflow.keras import layers, models
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.utils import to_categorical

# 加载数据
(train_images, train_labels), (test_images, test_labels) = cifar10.load_data()

# 数据预处理
train_images = train_images.astype('float32') / 255
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)

# 基础CNN模型
model = models.Sequential([
    layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.MaxPooling2D((2, 2)),
    layers.Conv2D(64, (3, 3), activation='relu'),
    layers.Flatten(),
    layers.Dense(64, activation='relu'),
    layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='categorical_crossentropy',
              metrics=['accuracy'])

history = model.fit(train_images, train_labels, 
                    epochs=10, 
                    batch_size=64,
                    validation_data=(test_images, test_labels))

改进方法

增加模型复杂度

python 复制代码
model = models.Sequential([
    layers.Conv2D(64, (3, 3), activation='relu', input_shape=(32, 32, 3), padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(128, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.Conv2D(256, (3, 3), activation='relu', padding='same'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2, 2)),
    layers.Dropout(0.25),
    
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.BatchNormalization(),
    layers.Dropout(0.5),
    layers.Dense(10, activation='softmax')
])

优化器调参

python 复制代码
from tensorflow.keras.optimizers import Adam

optimizer = Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07)
model.compile(optimizer=optimizer,
              loss='categorical_crossentropy',
              metrics=['accuracy'])

数据增强

python 复制代码
from tensorflow.keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
    rotation_range=15,
    width_shift_range=0.1,
    height_shift_range=0.1,
    horizontal_flip=True,
    zoom_range=0.1
)
datagen.fit(train_images)

history = model.fit(datagen.flow(train_images, train_labels, batch_size=64),
                    epochs=50,
                    validation_data=(test_images, test_labels))

早停和模型检查点

python 复制代码
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint

callbacks = [
    EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True),
    ModelCheckpoint('best_model.h5', monitor='val_accuracy', save_best_only=True)
]

history = model.fit(..., callbacks=callbacks, epochs=100)
相关推荐
love530love25 分钟前
ComfyUI 升级 v0.4.0 踩坑记录:解决 TypeError: QM_Queue.task_done() 报错
人工智能·windows·python·comfyui
阿坤带你走近大数据1 小时前
Python基础知识-数据结构篇
开发语言·数据结构·python
小智RE0-走在路上1 小时前
Python学习笔记(7)--集合,字典,数据容器总结
笔记·python·学习
沃斯堡&蓝鸟1 小时前
DAY 29 异常处理
python
LinkTime_Cloud1 小时前
谷歌深夜突袭:免费Flash模型发令,部分测试优于 GPT-5.2
人工智能·gpt·深度学习
Direction_Wind1 小时前
抓包的使用与讲解
python
职业码农NO.11 小时前
智能体推理范式: Plan-and-Execute(规划与执行)
人工智能·python·数据分析·系统架构·知识图谱·agent·集成学习
Aspect of twilight1 小时前
深度学习不同GPU性能比较
人工智能·深度学习
爱笑的眼睛111 小时前
超越`cross_val_score`:深入剖析Scikit-learn交叉验证API的设计哲学与高阶实践
java·人工智能·python·ai
丝瓜蛋汤1 小时前
chunking-free RAG简介
人工智能·深度学习·机器学习