任务来源:https://aicarrier.feishu.cn/wiki/D7kZw9Nx4iMyDnkpL0Gc5giNn5g
闯关任务:端侧小模型论文分类微调练习打榜赛 赛中提交结果超过基线,并提交复现文档。
本文档说明:
1.任务完成证明贴图
2.原理说明
3.实现过程代码(会针对完全小白用户做一些批注,需要注意文件存放路径)
一、任务完成证明

二、原理说明
XTuner 是一款高效、灵活、全能的轻量化大模型微调工具库。
核心特点
-
高效性能:支持低至 8GB 显存的 7B 模型微调,亦支持多节点 70B+ 模型训练;内置高性能算子自动调度,兼容 DeepSpeed 优化。
-
极致灵活:兼容多种大语言模型(如 InternLM、LLaMA、ChatGLM)与多模态模型,支持 QLoRA、LoRA、全量参数等多种微调方法与数据格式。
-
一体化方案:涵盖增量预训练、指令微调、Agent 微调,内置多种对话模板,支持与 LMDeploy、OpenCompass 无缝集成。
解决痛点
-
降低大模型微调对算力资源的要求
-
提升多模型、多算法环境下的兼容性与效率

github仓库:https://github.com/InternLM/xtuner
动态知识库:https://deepwiki.com/InternLM/xtuner
贴心为完全小白补充一个如何从github拉代码的命令
bash
git clone https://github.com/InternLM/xtuner.git
三、实现过程代码
1.在创建开发机界面选择镜像为 Cuda12.2-conda,并选择 GPU 为50% A100(肯定越大越好哈哈)
2.创建虚拟环境
bash
conda create -n xtuner_513 python=3.10 -y
conda activate xtuner_513
pip install torch==2.4.0+cu121 torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu121
pip install xtuner timm flash_attn datasets==2.21.0 deepspeed==0.16.1
conda install mpi4py -y
#为了兼容模型,降级transformers版本
pip uninstall transformers -y
pip install transformers==4.48.0 --no-cache-dir -i https://pypi.tuna.tsinghua.edu.cn/simple
3.输入xtuner list-cfg
检验环境安装
bash
xtuner list-cfg
4.数据获取
关于数据详情参考InternLM论文分类微调实践(swift 版)数据部分
原本的数据是swift版本,因此需要代码转化。(从https://aicarrier.feishu.cn/wiki/D7kZw9Nx4iMyDnkpL0Gc5giNn5g链接里面进去通过sftdata.jsonl关键字搜索下载https://aicarrier.feishu.cn/wiki/D7kZw9Nx4iMyDnkpL0Gc5giNn5g链接里面进去通过)
5.训练(上海人工智能实验室InternStudio工作机已经在路径下放好模型文件)
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat ./
6.注意事项(针对完全小白重点说明!!!)

7.微调脚本
python
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from datasets import load_dataset
from mmengine.dataset import DefaultSampler
from mmengine.hooks import (
CheckpointHook,
DistSamplerSeedHook,
IterTimerHook,
LoggerHook,
ParamSchedulerHook,
)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from xtuner.dataset import process_hf_dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import alpaca_map_fn, template_map_fn_factory
from xtuner.engine.hooks import (
DatasetInfoHook,
EvaluateChatHook,
VarlenAttnArgsToMessageHubHook,
)
from xtuner.engine.runner import TrainLoop
from xtuner.model import SupervisedFinetune
from xtuner.parallel.sequence import SequenceParallelSampler
from xtuner.utils import PROMPT_TEMPLATE, SYSTEM_TEMPLATE
#######################################################################
# PART 1 Settings #
#######################################################################
# Model
pretrained_model_name_or_path = "./internlm2_5-7b-chat"
use_varlen_attn = False
# Data
alpaca_en_path = "/root/xtuner/datasets/train/sftdata.jsonl"#换成自己的数据路径
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 2048
pack_to_max_length = True
# parallel
sequence_parallel_size = 1
# Scheduler & Optimizer
batch_size = 1 # per_device
accumulative_counts = 1
accumulative_counts *= sequence_parallel_size
dataloader_num_workers = 0
max_epochs = 3
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1 # grad clip
warmup_ratio = 0.03
# Save
save_steps = 500
save_total_limit = 2 # Maximum checkpoints to keep (-1 means unlimited)
# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = SYSTEM_TEMPLATE.alpaca
evaluation_inputs = ["请给我介绍五个上海的景点", "Please tell me five scenic spots in Shanghai"]
#######################################################################
# PART 2 Model & Tokenizer #
#######################################################################
tokenizer = dict(
type=AutoTokenizer.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
padding_side="right",
)
model = dict(
type=SupervisedFinetune,
use_varlen_attn=use_varlen_attn,
llm=dict(
type=AutoModelForCausalLM.from_pretrained,
pretrained_model_name_or_path=pretrained_model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16,
quantization_config=dict(
type=BitsAndBytesConfig,
load_in_4bit=True,
load_in_8bit=False,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
),
),
lora=dict(
type=LoraConfig,
r=64,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
),
)
#######################################################################
# PART 3 Dataset & Dataloader #
#######################################################################
alpaca_en = dict(
type=process_hf_dataset,
dataset=dict(type=load_dataset, path='json', data_files=alpaca_en_path),
tokenizer=tokenizer,
max_length=max_length,
dataset_map_fn=alpaca_map_fn,
template_map_fn=dict(type=template_map_fn_factory, template=prompt_template),
remove_unused_columns=True,
shuffle_before_pack=True,
pack_to_max_length=pack_to_max_length,
use_varlen_attn=use_varlen_attn,
)
sampler = SequenceParallelSampler if sequence_parallel_size > 1 else DefaultSampler
train_dataloader = dict(
batch_size=batch_size,
num_workers=dataloader_num_workers,
dataset=alpaca_en,
sampler=dict(type=sampler, shuffle=True),
collate_fn=dict(type=default_collate_fn, use_varlen_attn=use_varlen_attn),
)
#######################################################################
# PART 4 Scheduler & Optimizer #
#######################################################################
# optimizer
optim_wrapper = dict(
type=AmpOptimWrapper,
optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
accumulative_counts=accumulative_counts,
loss_scale="dynamic",
dtype="float16",
)
# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md # noqa: E501
param_scheduler = [
dict(
type=LinearLR,
start_factor=1e-5,
by_epoch=True,
begin=0,
end=warmup_ratio * max_epochs,
convert_to_iter_based=True,
),
dict(
type=CosineAnnealingLR,
eta_min=0.0,
by_epoch=True,
begin=warmup_ratio * max_epochs,
end=max_epochs,
convert_to_iter_based=True,
),
]
# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)
#######################################################################
# PART 5 Runtime #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
dict(type=DatasetInfoHook, tokenizer=tokenizer),
dict(
type=EvaluateChatHook,
tokenizer=tokenizer,
every_n_iters=evaluation_freq,
evaluation_inputs=evaluation_inputs,
system=SYSTEM,
prompt_template=prompt_template,
),
]
if use_varlen_attn:
custom_hooks += [dict(type=VarlenAttnArgsToMessageHubHook)]
# configure default hooks
default_hooks = dict(
# record the time of every iteration.
timer=dict(type=IterTimerHook),
# print log every 10 iterations.
logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
# enable the parameter scheduler.
param_scheduler=dict(type=ParamSchedulerHook),
# save checkpoint per `save_steps`.
checkpoint=dict(
type=CheckpointHook,
by_epoch=False,
interval=save_steps,
max_keep_ckpts=save_total_limit,
),
# set sampler seed in distributed evrionment.
sampler_seed=dict(type=DistSamplerSeedHook),
)
# configure environment
env_cfg = dict(
# whether to enable cudnn benchmark
cudnn_benchmark=False,
# set multi process parameters
mp_cfg=dict(mp_start_method="fork", opencv_num_threads=0),
# set distributed parameters
dist_cfg=dict(backend="nccl"),
)
# set visualizer
visualizer = None
# set log level
log_level = "INFO"
# load from which checkpoint
load_from = None
# whether to resume training from the loaded checkpoint
resume = False
# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)
# set log processor
log_processor = dict(by_epoch=False)
pretrained_model_name_or_path
alpaca_en_path
只需要注意34和38行模型、数据位置就好了。
8.启动脚本
bash
cd /root/paper-xtuner/513
conda activate xtuner_513
xtuner train internlm2_5_chat_7b_qlora_alpaca_e3_copy.py --deepspeed deepspeed_zero1
9.合并
在完成XTuner的微调后,需要进行两个步骤:首先将PTH格式的模型转换为HuggingFace格式,然后将adapter与基础模型合并。
bash
xtuner convert pth_to_hf internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ./lora_output/iter_180.pth ./lora_output/hf
唯一需要注意的就是pth文件名称和自己生成的保持一致,我的是iter_180.pth,参考任务里面的事iter_180.pth
9.1 将PTH格式转换为HuggingFace格式
bash
xtuner convert pth_to_hf internlm2_5_chat_7b_qlora_alpaca_e3_copy.py ./lora_output/iter_180.pth ./lora_output/hf
9.2. 合并adapter和基础模型
bash
xtuner convert merge \
./internlm2_5-7b-chat \
./lora_output/hf \
./lora_output/merged \
--max-shard-size 2GB
完成这两个步骤后,合并好的模型将保存在./lora_output/merged
目录下,你可以直接使用这个模型进行推理了。
10.推理
python
from transformers import AutoModelForCausalLM, AutoTokenizer
import time
# 加载模型和分词器
# model_path = "./lora_output/merged"
model_path = "./internlm2_5-7b-chat"
print(f"加载模型:{model_path}")
start_time = time.time()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, torch_dtype="auto", device_map="auto"
)
def classify_paper(title, authors, abstract, additional_info=""):
# 构建输入,包含多选选项
prompt = f"Based on the title '{title}', authors '{authors}', and abstract '{abstract}', please determine the scientific category of this paper. {additional_info}\n\nA. astro-ph\nB. cond-mat.mes-hall\nC. cond-mat.mtrl-sci\nD. cs.CL\nE. cs.CV\nF. cs.LG\nG. gr-qc\nH. hep-ph\nI. hep-th\nJ. quant-ph"
# 设置系统信息
messages = [
{"role": "system", "content": "你是个优秀的论文分类师"},
{"role": "user", "content": prompt},
]
# 应用聊天模板
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
# 生成回答
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=10, # 减少生成长度,只需要简短答案
temperature=0.1, # 降低温度提高确定性
top_p=0.95,
repetition_penalty=1.0,
)
# 解码输出
response = tokenizer.decode(
outputs[0][inputs.input_ids.shape[1] :], skip_special_tokens=True
).strip()
# 如果回答中包含选项标识符,只返回该标识符
for option in ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J"]:
if option in response:
return option
# 如果回答不包含选项,返回完整回答
return response
# 示例使用
if __name__ == "__main__":
title = "Outilex, plate-forme logicielle de traitement de textes 'ecrits"
authors = "Olivier Blanc (IGM-LabInfo), Matthieu Constant (IGM-LabInfo), Eric Laporte (IGM-LabInfo)"
abstract = "The Outilex software platform, which will be made available to research, development and industry, comprises software components implementing all the fundamental operations of written text processing: processing without lexicons, exploitation of lexicons and grammars, language resource management. All data are structured in XML formats, and also in more compact formats, either readable or binary, whenever necessary; the required format converters are included in the platform; the grammar formats allow for combining statistical approaches with resource-based approaches. Manually constructed lexicons for French and English, originating from the LADL, and of substantial coverage, will be distributed with the platform under LGPL-LR license."
result = classify_paper(title, authors, abstract)
print(result)
# 计算并打印总耗时
end_time = time.time()
total_time = end_time - start_time
print(f"程序总耗时:{total_time:.2f}秒")
11.部署
bash
pip install lmdeploy
python -m lmdeploy.pytorch.chat ./lora_output/merged \
--max_new_tokens 256 \
--temperture 0.8 \
--top_p 0.95 \
--seed 0
12.提交模型完成评测(这里使用swift 指令方法,其实我更喜欢ModeScope 官方 Python SDK方法,但是传了N次始终不成功,总是到最后剩下几个条目传不上去)
首先需要在 ModelScope 创建模型,为你的模型取一个响亮优雅又好听的名字,然后按右下图中的信息创建(下面截图有点问题,根本不需要创建②,如果你创建了使用ModeScope 官方 Python SDK方法会提示你重复了,如果没有反而可以直接创建)
接下来需要两个步骤:
到刚创建好的模型仓库中,拿到**hub_model_id
** ,实际上就是 {账号名称/模型库名称}
,如"Shanghai_AI_Laboratory/internlm3-8b-instruct
"
账号设置-访问令牌 中拿到**hub_token
**,需妥善保存,不要暴露给他人


12.1下载github
bash
apt-get install git-lfs
git lfs install
12.2提交
bash
swift export \
--model /root/paper/config/swift_output/InternLM3-8B-Lora-SFT/v3-20250510-231854/checkpoint-21-merged\
--push_to_hub true \
--hub_model_id 'zhangfc12345678/zfc-camp5' #替换成自己的 \
--hub_token '03fb4fxx' \ #替换成自己的
--use_hf false
13.填链接提交模型
记住你的**"** Modelscope账号名称/模型库名称
" ,如"Shanghai_AI_Laboratory/internlm3-8b-instruct
", 然后填写信息提交单等待成绩榜单更新吧!!!如果完成了测评,会在成绩榜单最下面的提交记录中,查找自己的uid进行查询。
信息 提交单:https://aicarrier.feishu.cn/share/base/form/shrcn0JkjbZKMeMPw04uHCWc5Pg