Python Day50 学习(仍为日志Day19的内容复习)

补充:梳理超参数调整流程(逻辑)

超参数调节的流程逻辑可以总结为以下几个步骤:


1. 明确目标

确定你要优化的模型和评估指标(如准确率、F1值、AUC等)。


2. 选择要调节的超参数

列出模型中影响较大的超参数,比如:

  • 决策树:max_depth, min_samples_split
  • LightGBM:num_leaves, learning_rate, n_estimators 等

3. 确定参数搜索空间

为每个超参数设定一个合理的取值范围(如 learning_rate 在 0.01~0.2 之间)。


4. 选择调参方法

常见方法有:

  • 网格搜索(Grid Search):遍历所有参数组合
  • 随机搜索(Random Search):随机采样参数组合
  • 贝叶斯优化等智能搜索方法

5. 划分数据集

将数据分为训练集、验证集(或使用交叉验证),不能用测试集调参


6. 运行调参

在训练集上训练模型,在验证集上评估每组参数的效果,记录结果。


7. 选择最优参数

根据验证集上的评估指标,选出表现最好的参数组合。


8. 最终评估

用最优参数在测试集上评估模型,得到最终结果。


总结流程图:

确定目标 → 选超参数 → 定范围 → 选方法 → 划分数据 → 运行调参 → 选最优 → 测试集评估

这样可以保证模型既不过拟合,也能达到最优效果。

手写笔记复习(贝叶斯优化)

今日复习到这里,明日继续加油!!

相关推荐
独行soc36 分钟前
2025年渗透测试面试题总结-264(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
汤姆yu1 小时前
基于python的外卖配送及数据分析系统
开发语言·python·外卖分析
如何原谅奋力过但无声2 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API2 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
roman_日积跬步-终至千里2 小时前
【强化学习基础(2)】被动强化学习:学习价值函数
学习
AndrewHZ3 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
逢考必过@k3 小时前
6级550学习ing
学习
温轻舟4 小时前
Python自动办公工具05-Word表中相同内容的单元格自动合并
开发语言·python·word·自动化办公·温轻舟
陈天伟教授4 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
习习.y5 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python