论文略读:MUSE: Machine Unlearning Six-Way Evaluation for Language Models

ICLR 2025 56668

语言模型(LMs)通常在海量文本数据上进行训练,其中可能包含隐私信息受版权保护的内容 。当数据所有者因隐私或版权问题要求删除其数据时,最理想的做法是精确地遗忘这些数据点 ,即重新训练模型但不包含相关数据。然而,这在现代大型模型中几乎是不可行的 ,因此催生了众多近似机器遗忘(approximate machine unlearning)算法

目前对于这些算法的评估通常范围狭窄 ,难以从模型部署者数据拥有者 的角度全面衡量其有效性与实用性。为解决这一问题,本文提出了 MUSE ------一个全面的机器遗忘评估基准(Machine Unlearning Evaluation Benchmark),系统定义了对被遗忘模型的六项关键要求:

  1. 无原文记忆(No Verbatim Memorization):模型不应再生成训练数据中的原始句子;

  2. 无知识记忆(No Knowledge Memorization):不应再体现对敏感知识内容的推理或泛化能力;

  3. 无隐私泄露(No Privacy Leakage):模型不应泄露训练数据中的私人信息;

  4. 保留模型效用(Utility Preservation):对未被删除的数据应保持原有性能;

  5. 可扩展性(Scalability):能够处理大规模的删除请求;

  6. 可持续性(Sustainability):支持多轮连续删除请求而不损害模型质量。

作者在一个 70 亿参数语言模型上,选取了 8 种主流遗忘算法,使用 哈利波特系列小说新闻文章作为需遗忘的数据源,进行系统评测。主要发现包括:

  • 大多数算法能在不同程度上防止原文与知识记忆;

  • 仅有一种方法能有效避免隐私泄露

  • 现有方法在部署端实际表现不佳:它们往往显著损害模型在保留数据上的效能 ,且无法稳定支持连续或大规模的删除请求

综上,本文通过 MUSE 框架揭示了当前语言模型机器遗忘技术在实用性与鲁棒性方面的重大缺陷,强调未来研究需从多维度同时考虑"删除效果"与"模型可用性"的权衡,推动真正可部署的机器遗忘方法发展。

相关推荐
草莓熊Lotso4 小时前
Linux 文件描述符与重定向实战:从原理到 minishell 实现
android·linux·运维·服务器·数据库·c++·人工智能
Coder_Boy_5 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱7 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º9 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee11 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º12 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys12 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567812 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子12 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能12 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算