论文略读:MUSE: Machine Unlearning Six-Way Evaluation for Language Models

ICLR 2025 56668

语言模型(LMs)通常在海量文本数据上进行训练,其中可能包含隐私信息受版权保护的内容 。当数据所有者因隐私或版权问题要求删除其数据时,最理想的做法是精确地遗忘这些数据点 ,即重新训练模型但不包含相关数据。然而,这在现代大型模型中几乎是不可行的 ,因此催生了众多近似机器遗忘(approximate machine unlearning)算法

目前对于这些算法的评估通常范围狭窄 ,难以从模型部署者数据拥有者 的角度全面衡量其有效性与实用性。为解决这一问题,本文提出了 MUSE ------一个全面的机器遗忘评估基准(Machine Unlearning Evaluation Benchmark),系统定义了对被遗忘模型的六项关键要求:

  1. 无原文记忆(No Verbatim Memorization):模型不应再生成训练数据中的原始句子;

  2. 无知识记忆(No Knowledge Memorization):不应再体现对敏感知识内容的推理或泛化能力;

  3. 无隐私泄露(No Privacy Leakage):模型不应泄露训练数据中的私人信息;

  4. 保留模型效用(Utility Preservation):对未被删除的数据应保持原有性能;

  5. 可扩展性(Scalability):能够处理大规模的删除请求;

  6. 可持续性(Sustainability):支持多轮连续删除请求而不损害模型质量。

作者在一个 70 亿参数语言模型上,选取了 8 种主流遗忘算法,使用 哈利波特系列小说新闻文章作为需遗忘的数据源,进行系统评测。主要发现包括:

  • 大多数算法能在不同程度上防止原文与知识记忆;

  • 仅有一种方法能有效避免隐私泄露

  • 现有方法在部署端实际表现不佳:它们往往显著损害模型在保留数据上的效能 ,且无法稳定支持连续或大规模的删除请求

综上,本文通过 MUSE 框架揭示了当前语言模型机器遗忘技术在实用性与鲁棒性方面的重大缺陷,强调未来研究需从多维度同时考虑"删除效果"与"模型可用性"的权衡,推动真正可部署的机器遗忘方法发展。

相关推荐
工藤学编程1 小时前
零基础学AI大模型之LangChain智能体之initialize_agent开发实战
人工智能·langchain
king王一帅2 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技4 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102166 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了7 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好7 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
Niuguangshuo7 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
智驱力人工智能7 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算