python打卡day53

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
python 复制代码
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False

# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

使用设备: cuda

python 复制代码
# 参数配置
LATENT_DIM = 10
EPOCHS = 10000
BATCH_SIZE = 32
LR = 0.0002
BETA1 = 0.5
python 复制代码
# 1. 加载并预处理数据
data = pd.read_csv("e:/python打卡/python60-days-challenge/heart.csv")
X = data.drop('target', axis=1).values
y = data['target'].values

# 只选择有心脏病的样本(target=1)
X_patient = X[y == 1]
scaler = MinMaxScaler(feature_range=(-1, 1))
X_scaled = scaler.fit_transform(X_patient)

# 转换为PyTorch Tensor并创建DataLoader
real_data_tensor = torch.from_numpy(X_scaled).float()
dataset = TensorDataset(real_data_tensor)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
python 复制代码
# 2. 构建模型
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(LATENT_DIM, 16),
            nn.ReLU(),
            nn.Linear(16, 32),
            nn.ReLU(),
            nn.Linear(32, 13),  # 13个特征
            nn.Tanh()
        )

    def forward(self, x):
        return self.model(x)

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(13, 32),
            nn.LeakyReLU(0.2),
            nn.Linear(32, 16),
            nn.LeakyReLU(0.2),
            nn.Linear(16, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.model(x)

# 实例化模型
generator = Generator().to(device)
discriminator = Discriminator().to(device)

# 损失函数和优化器
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=LR, betas=(BETA1, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=LR, betas=(BETA1, 0.999))
python 复制代码
# 3. 训练循环
print("\n--- 开始训练 ---")
for epoch in range(EPOCHS):
    for i, (real_data,) in enumerate(dataloader):
        real_data = real_data.to(device)
        current_batch_size = real_data.size(0)
        
        # 训练判别器
        d_optimizer.zero_grad()
        
        # 真实数据
        real_labels = torch.ones(current_batch_size, 1).to(device)
        real_output = discriminator(real_data)
        d_loss_real = criterion(real_output, real_labels)
        
        # 生成数据
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise).detach()
        fake_labels = torch.zeros(current_batch_size, 1).to(device)
        fake_output = discriminator(fake_data)
        d_loss_fake = criterion(fake_output, fake_labels)
        
        d_loss = d_loss_real + d_loss_fake
        d_loss.backward()
        d_optimizer.step()
        
        # 训练生成器
        g_optimizer.zero_grad()
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise)
        fake_output = discriminator(fake_data)
        g_loss = criterion(fake_output, real_labels)
        g_loss.backward()
        g_optimizer.step()
    
    if (epoch + 1) % 1000 == 0:
        print(f"Epoch [{epoch+1}/{EPOCHS}], Discriminator Loss: {d_loss.item():.4f}, Generator Loss: {g_loss.item():.4f}")

--- 开始训练 ---

Epoch [1000/10000], Discriminator Loss: 1.9460, Generator Loss: 0.4685

Epoch [2000/10000], Discriminator Loss: 1.1531, Generator Loss: 0.8496

Epoch [3000/10000], Discriminator Loss: 1.2105, Generator Loss: 0.9245

Epoch [4000/10000], Discriminator Loss: 1.3388, Generator Loss: 0.8858

Epoch [5000/10000], Discriminator Loss: 0.8793, Generator Loss: 1.0353

Epoch [6000/10000], Discriminator Loss: 0.8470, Generator Loss: 0.6334

Epoch [7000/10000], Discriminator Loss: 1.0139, Generator Loss: 1.3785

Epoch [8000/10000], Discriminator Loss: 1.2486, Generator Loss: 1.8814

Epoch [9000/10000], Discriminator Loss: 1.0721, Generator Loss: 1.3251

Epoch [10000/10000], Discriminator Loss: 0.7876, Generator Loss: 1.5542

python 复制代码
# 4. 生成新数据并评估
# 生成样本
generator.eval()
with torch.no_grad():
    num_new_samples = len(X_patient)  # 生成与原始样本相同数量的数据
    noise = torch.randn(num_new_samples, LATENT_DIM).to(device)
    generated_data_scaled = generator(noise)

# 转换回原始尺度
generated_data = scaler.inverse_transform(generated_data_scaled.cpu().numpy())
python 复制代码
# 这里使用一个简单的分类器作为示例
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=42)
clf.fit(X_train, y_train)
original_f1 = f1_score(y_test, clf.predict(X_test))

# 使用GAN生成数据后的评估
# 将生成的数据标记为1(心脏病)
generated_y = np.ones(len(generated_data))
# 合并原始数据和生成数据
X_augmented = np.vstack([X_train, generated_data])
y_augmented = np.hstack([y_train, generated_y])
python 复制代码
# 重新训练
clf.fit(X_augmented, y_augmented)
augmented_f1 = f1_score(y_test, clf.predict(X_test))

print(f"\n原始F1分数: {original_f1:.4f}")
print(f"使用GAN数据增强后F1分数: {augmented_f1:.4f}")

原始F1分数: 0.8400

使用GAN数据增强后F1分数: 0.8163

python 复制代码
# 6. 可视化部分特征对比
plt.figure(figsize=(12, 6))
for i in range(4):  # 只可视化前4个特征
    plt.subplot(2, 2, i+1)
    plt.hist(X_patient[:, i], bins=20, alpha=0.5, label='真实数据')
    plt.hist(generated_data[:, i], bins=20, alpha=0.5, label='生成数据')
    plt.title(f'特征 {i+1} 分布对比')
    plt.legend()
plt.tight_layout()
plt.show()

@浙大疏锦行

相关推荐
生信大表哥7 小时前
单细胞测序分析(五)降维聚类&数据整合
linux·python·聚类·数信院生信服务器
seeyoutlb8 小时前
微服务全局日志处理
java·python·微服务
ada7_8 小时前
LeetCode(python)——148.排序链表
python·算法·leetcode·链表
岁月宁静9 小时前
LangChain + LangGraph 实战:构建生产级多模态 WorkflowAgent 的完整指南
人工智能·python·agent
梯度下降不了班9 小时前
【mmodel/xDit】Cross-Attention 深度解析:文生图/文生视频的核心桥梁
人工智能·深度学习·ai作画·stable diffusion·音视频·transformer
第二只羽毛10 小时前
主题爬虫采集主题新闻信息
大数据·爬虫·python·网络爬虫
plmm烟酒僧10 小时前
TensorRT 推理 YOLO Demo 分享 (Python)
开发语言·python·yolo·tensorrt·runtime·推理
天才测试猿10 小时前
Postman中变量的使用详解
自动化测试·软件测试·python·测试工具·职场和发展·接口测试·postman
帕巴啦10 小时前
Arcgis计算面要素的面积、周长、宽度、长度及最大直径
python·arcgis
AI小云10 小时前
【数据操作与可视化】Matplotlib绘图-生成其他图表类型
开发语言·python·matplotlib