python打卡day53

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
python 复制代码
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False

# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

使用设备: cuda

python 复制代码
# 参数配置
LATENT_DIM = 10
EPOCHS = 10000
BATCH_SIZE = 32
LR = 0.0002
BETA1 = 0.5
python 复制代码
# 1. 加载并预处理数据
data = pd.read_csv("e:/python打卡/python60-days-challenge/heart.csv")
X = data.drop('target', axis=1).values
y = data['target'].values

# 只选择有心脏病的样本(target=1)
X_patient = X[y == 1]
scaler = MinMaxScaler(feature_range=(-1, 1))
X_scaled = scaler.fit_transform(X_patient)

# 转换为PyTorch Tensor并创建DataLoader
real_data_tensor = torch.from_numpy(X_scaled).float()
dataset = TensorDataset(real_data_tensor)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
python 复制代码
# 2. 构建模型
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(LATENT_DIM, 16),
            nn.ReLU(),
            nn.Linear(16, 32),
            nn.ReLU(),
            nn.Linear(32, 13),  # 13个特征
            nn.Tanh()
        )

    def forward(self, x):
        return self.model(x)

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(13, 32),
            nn.LeakyReLU(0.2),
            nn.Linear(32, 16),
            nn.LeakyReLU(0.2),
            nn.Linear(16, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.model(x)

# 实例化模型
generator = Generator().to(device)
discriminator = Discriminator().to(device)

# 损失函数和优化器
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=LR, betas=(BETA1, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=LR, betas=(BETA1, 0.999))
python 复制代码
# 3. 训练循环
print("\n--- 开始训练 ---")
for epoch in range(EPOCHS):
    for i, (real_data,) in enumerate(dataloader):
        real_data = real_data.to(device)
        current_batch_size = real_data.size(0)
        
        # 训练判别器
        d_optimizer.zero_grad()
        
        # 真实数据
        real_labels = torch.ones(current_batch_size, 1).to(device)
        real_output = discriminator(real_data)
        d_loss_real = criterion(real_output, real_labels)
        
        # 生成数据
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise).detach()
        fake_labels = torch.zeros(current_batch_size, 1).to(device)
        fake_output = discriminator(fake_data)
        d_loss_fake = criterion(fake_output, fake_labels)
        
        d_loss = d_loss_real + d_loss_fake
        d_loss.backward()
        d_optimizer.step()
        
        # 训练生成器
        g_optimizer.zero_grad()
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise)
        fake_output = discriminator(fake_data)
        g_loss = criterion(fake_output, real_labels)
        g_loss.backward()
        g_optimizer.step()
    
    if (epoch + 1) % 1000 == 0:
        print(f"Epoch [{epoch+1}/{EPOCHS}], Discriminator Loss: {d_loss.item():.4f}, Generator Loss: {g_loss.item():.4f}")

--- 开始训练 ---

Epoch [1000/10000], Discriminator Loss: 1.9460, Generator Loss: 0.4685

Epoch [2000/10000], Discriminator Loss: 1.1531, Generator Loss: 0.8496

Epoch [3000/10000], Discriminator Loss: 1.2105, Generator Loss: 0.9245

Epoch [4000/10000], Discriminator Loss: 1.3388, Generator Loss: 0.8858

Epoch [5000/10000], Discriminator Loss: 0.8793, Generator Loss: 1.0353

Epoch [6000/10000], Discriminator Loss: 0.8470, Generator Loss: 0.6334

Epoch [7000/10000], Discriminator Loss: 1.0139, Generator Loss: 1.3785

Epoch [8000/10000], Discriminator Loss: 1.2486, Generator Loss: 1.8814

Epoch [9000/10000], Discriminator Loss: 1.0721, Generator Loss: 1.3251

Epoch [10000/10000], Discriminator Loss: 0.7876, Generator Loss: 1.5542

python 复制代码
# 4. 生成新数据并评估
# 生成样本
generator.eval()
with torch.no_grad():
    num_new_samples = len(X_patient)  # 生成与原始样本相同数量的数据
    noise = torch.randn(num_new_samples, LATENT_DIM).to(device)
    generated_data_scaled = generator(noise)

# 转换回原始尺度
generated_data = scaler.inverse_transform(generated_data_scaled.cpu().numpy())
python 复制代码
# 这里使用一个简单的分类器作为示例
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=42)
clf.fit(X_train, y_train)
original_f1 = f1_score(y_test, clf.predict(X_test))

# 使用GAN生成数据后的评估
# 将生成的数据标记为1(心脏病)
generated_y = np.ones(len(generated_data))
# 合并原始数据和生成数据
X_augmented = np.vstack([X_train, generated_data])
y_augmented = np.hstack([y_train, generated_y])
python 复制代码
# 重新训练
clf.fit(X_augmented, y_augmented)
augmented_f1 = f1_score(y_test, clf.predict(X_test))

print(f"\n原始F1分数: {original_f1:.4f}")
print(f"使用GAN数据增强后F1分数: {augmented_f1:.4f}")

原始F1分数: 0.8400

使用GAN数据增强后F1分数: 0.8163

python 复制代码
# 6. 可视化部分特征对比
plt.figure(figsize=(12, 6))
for i in range(4):  # 只可视化前4个特征
    plt.subplot(2, 2, i+1)
    plt.hist(X_patient[:, i], bins=20, alpha=0.5, label='真实数据')
    plt.hist(generated_data[:, i], bins=20, alpha=0.5, label='生成数据')
    plt.title(f'特征 {i+1} 分布对比')
    plt.legend()
plt.tight_layout()
plt.show()

@浙大疏锦行

相关推荐
StarPrayers.2 小时前
K-means 聚类
机器学习·kmeans·聚类
惊讶的猫6 小时前
LSTM论文解读
开发语言·python
测试老哥6 小时前
软件测试之单元测试知识总结
自动化测试·软件测试·python·测试工具·职场和发展·单元测试·测试用例
buvsvdp50059ac6 小时前
如何在VSCode中设置Python解释器?
ide·vscode·python
极客学术工坊7 小时前
2023年辽宁省数学建模竞赛-B题 数据驱动的水下导航适配区分类预测-基于支持向量机对水下导航适配区分类的研究
机器学习·支持向量机·数学建模·分类
njxiejing7 小时前
Python进度条工具tqdm的安装与使用
开发语言·python
庄周迷蝴蝶7 小时前
旋转位置编码(Rotary Position Embedding,RoPE)
人工智能·机器学习
xier_ran7 小时前
深度学习:RMSprop 优化算法详解
人工智能·深度学习·算法
Mr_Dwj8 小时前
【Python】Python 基本概念
开发语言·人工智能·python·大模型·编程语言