python打卡day53

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
python 复制代码
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False

# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

使用设备: cuda

python 复制代码
# 参数配置
LATENT_DIM = 10
EPOCHS = 10000
BATCH_SIZE = 32
LR = 0.0002
BETA1 = 0.5
python 复制代码
# 1. 加载并预处理数据
data = pd.read_csv("e:/python打卡/python60-days-challenge/heart.csv")
X = data.drop('target', axis=1).values
y = data['target'].values

# 只选择有心脏病的样本(target=1)
X_patient = X[y == 1]
scaler = MinMaxScaler(feature_range=(-1, 1))
X_scaled = scaler.fit_transform(X_patient)

# 转换为PyTorch Tensor并创建DataLoader
real_data_tensor = torch.from_numpy(X_scaled).float()
dataset = TensorDataset(real_data_tensor)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
python 复制代码
# 2. 构建模型
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(LATENT_DIM, 16),
            nn.ReLU(),
            nn.Linear(16, 32),
            nn.ReLU(),
            nn.Linear(32, 13),  # 13个特征
            nn.Tanh()
        )

    def forward(self, x):
        return self.model(x)

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(13, 32),
            nn.LeakyReLU(0.2),
            nn.Linear(32, 16),
            nn.LeakyReLU(0.2),
            nn.Linear(16, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.model(x)

# 实例化模型
generator = Generator().to(device)
discriminator = Discriminator().to(device)

# 损失函数和优化器
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=LR, betas=(BETA1, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=LR, betas=(BETA1, 0.999))
python 复制代码
# 3. 训练循环
print("\n--- 开始训练 ---")
for epoch in range(EPOCHS):
    for i, (real_data,) in enumerate(dataloader):
        real_data = real_data.to(device)
        current_batch_size = real_data.size(0)
        
        # 训练判别器
        d_optimizer.zero_grad()
        
        # 真实数据
        real_labels = torch.ones(current_batch_size, 1).to(device)
        real_output = discriminator(real_data)
        d_loss_real = criterion(real_output, real_labels)
        
        # 生成数据
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise).detach()
        fake_labels = torch.zeros(current_batch_size, 1).to(device)
        fake_output = discriminator(fake_data)
        d_loss_fake = criterion(fake_output, fake_labels)
        
        d_loss = d_loss_real + d_loss_fake
        d_loss.backward()
        d_optimizer.step()
        
        # 训练生成器
        g_optimizer.zero_grad()
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise)
        fake_output = discriminator(fake_data)
        g_loss = criterion(fake_output, real_labels)
        g_loss.backward()
        g_optimizer.step()
    
    if (epoch + 1) % 1000 == 0:
        print(f"Epoch [{epoch+1}/{EPOCHS}], Discriminator Loss: {d_loss.item():.4f}, Generator Loss: {g_loss.item():.4f}")

--- 开始训练 ---

Epoch [1000/10000], Discriminator Loss: 1.9460, Generator Loss: 0.4685

Epoch [2000/10000], Discriminator Loss: 1.1531, Generator Loss: 0.8496

Epoch [3000/10000], Discriminator Loss: 1.2105, Generator Loss: 0.9245

Epoch [4000/10000], Discriminator Loss: 1.3388, Generator Loss: 0.8858

Epoch [5000/10000], Discriminator Loss: 0.8793, Generator Loss: 1.0353

Epoch [6000/10000], Discriminator Loss: 0.8470, Generator Loss: 0.6334

Epoch [7000/10000], Discriminator Loss: 1.0139, Generator Loss: 1.3785

Epoch [8000/10000], Discriminator Loss: 1.2486, Generator Loss: 1.8814

Epoch [9000/10000], Discriminator Loss: 1.0721, Generator Loss: 1.3251

Epoch [10000/10000], Discriminator Loss: 0.7876, Generator Loss: 1.5542

python 复制代码
# 4. 生成新数据并评估
# 生成样本
generator.eval()
with torch.no_grad():
    num_new_samples = len(X_patient)  # 生成与原始样本相同数量的数据
    noise = torch.randn(num_new_samples, LATENT_DIM).to(device)
    generated_data_scaled = generator(noise)

# 转换回原始尺度
generated_data = scaler.inverse_transform(generated_data_scaled.cpu().numpy())
python 复制代码
# 这里使用一个简单的分类器作为示例
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=42)
clf.fit(X_train, y_train)
original_f1 = f1_score(y_test, clf.predict(X_test))

# 使用GAN生成数据后的评估
# 将生成的数据标记为1(心脏病)
generated_y = np.ones(len(generated_data))
# 合并原始数据和生成数据
X_augmented = np.vstack([X_train, generated_data])
y_augmented = np.hstack([y_train, generated_y])
python 复制代码
# 重新训练
clf.fit(X_augmented, y_augmented)
augmented_f1 = f1_score(y_test, clf.predict(X_test))

print(f"\n原始F1分数: {original_f1:.4f}")
print(f"使用GAN数据增强后F1分数: {augmented_f1:.4f}")

原始F1分数: 0.8400

使用GAN数据增强后F1分数: 0.8163

python 复制代码
# 6. 可视化部分特征对比
plt.figure(figsize=(12, 6))
for i in range(4):  # 只可视化前4个特征
    plt.subplot(2, 2, i+1)
    plt.hist(X_patient[:, i], bins=20, alpha=0.5, label='真实数据')
    plt.hist(generated_data[:, i], bins=20, alpha=0.5, label='生成数据')
    plt.title(f'特征 {i+1} 分布对比')
    plt.legend()
plt.tight_layout()
plt.show()

@浙大疏锦行

相关推荐
大写-凌祁3 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热3 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
CodeCraft Studio3 小时前
PDF处理控件Aspose.PDF教程:使用 Python 将 PDF 转换为 Base64
开发语言·python·pdf·base64·aspose·aspose.pdf
wan5555cn3 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
格林威4 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
困鲲鲲4 小时前
Python中内置装饰器
python
摩羯座-185690305944 小时前
Python数据可视化基础:使用Matplotlib绘制图表
大数据·python·信息可视化·matplotlib
爱隐身的官人5 小时前
cfshow-web入门-php特性
python·php·ctf
gb42152876 小时前
java中将租户ID包装为JSQLParser的StringValue表达式对象,JSQLParser指的是?
java·开发语言·python
THMAIL6 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融