python打卡day53

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
python 复制代码
# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False

# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")

使用设备: cuda

python 复制代码
# 参数配置
LATENT_DIM = 10
EPOCHS = 10000
BATCH_SIZE = 32
LR = 0.0002
BETA1 = 0.5
python 复制代码
# 1. 加载并预处理数据
data = pd.read_csv("e:/python打卡/python60-days-challenge/heart.csv")
X = data.drop('target', axis=1).values
y = data['target'].values

# 只选择有心脏病的样本(target=1)
X_patient = X[y == 1]
scaler = MinMaxScaler(feature_range=(-1, 1))
X_scaled = scaler.fit_transform(X_patient)

# 转换为PyTorch Tensor并创建DataLoader
real_data_tensor = torch.from_numpy(X_scaled).float()
dataset = TensorDataset(real_data_tensor)
dataloader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True)
python 复制代码
# 2. 构建模型
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(LATENT_DIM, 16),
            nn.ReLU(),
            nn.Linear(16, 32),
            nn.ReLU(),
            nn.Linear(32, 13),  # 13个特征
            nn.Tanh()
        )

    def forward(self, x):
        return self.model(x)

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.model = nn.Sequential(
            nn.Linear(13, 32),
            nn.LeakyReLU(0.2),
            nn.Linear(32, 16),
            nn.LeakyReLU(0.2),
            nn.Linear(16, 1),
            nn.Sigmoid()
        )

    def forward(self, x):
        return self.model(x)

# 实例化模型
generator = Generator().to(device)
discriminator = Discriminator().to(device)

# 损失函数和优化器
criterion = nn.BCELoss()
g_optimizer = optim.Adam(generator.parameters(), lr=LR, betas=(BETA1, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=LR, betas=(BETA1, 0.999))
python 复制代码
# 3. 训练循环
print("\n--- 开始训练 ---")
for epoch in range(EPOCHS):
    for i, (real_data,) in enumerate(dataloader):
        real_data = real_data.to(device)
        current_batch_size = real_data.size(0)
        
        # 训练判别器
        d_optimizer.zero_grad()
        
        # 真实数据
        real_labels = torch.ones(current_batch_size, 1).to(device)
        real_output = discriminator(real_data)
        d_loss_real = criterion(real_output, real_labels)
        
        # 生成数据
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise).detach()
        fake_labels = torch.zeros(current_batch_size, 1).to(device)
        fake_output = discriminator(fake_data)
        d_loss_fake = criterion(fake_output, fake_labels)
        
        d_loss = d_loss_real + d_loss_fake
        d_loss.backward()
        d_optimizer.step()
        
        # 训练生成器
        g_optimizer.zero_grad()
        noise = torch.randn(current_batch_size, LATENT_DIM).to(device)
        fake_data = generator(noise)
        fake_output = discriminator(fake_data)
        g_loss = criterion(fake_output, real_labels)
        g_loss.backward()
        g_optimizer.step()
    
    if (epoch + 1) % 1000 == 0:
        print(f"Epoch [{epoch+1}/{EPOCHS}], Discriminator Loss: {d_loss.item():.4f}, Generator Loss: {g_loss.item():.4f}")

--- 开始训练 ---

Epoch [1000/10000], Discriminator Loss: 1.9460, Generator Loss: 0.4685

Epoch [2000/10000], Discriminator Loss: 1.1531, Generator Loss: 0.8496

Epoch [3000/10000], Discriminator Loss: 1.2105, Generator Loss: 0.9245

Epoch [4000/10000], Discriminator Loss: 1.3388, Generator Loss: 0.8858

Epoch [5000/10000], Discriminator Loss: 0.8793, Generator Loss: 1.0353

Epoch [6000/10000], Discriminator Loss: 0.8470, Generator Loss: 0.6334

Epoch [7000/10000], Discriminator Loss: 1.0139, Generator Loss: 1.3785

Epoch [8000/10000], Discriminator Loss: 1.2486, Generator Loss: 1.8814

Epoch [9000/10000], Discriminator Loss: 1.0721, Generator Loss: 1.3251

Epoch [10000/10000], Discriminator Loss: 0.7876, Generator Loss: 1.5542

python 复制代码
# 4. 生成新数据并评估
# 生成样本
generator.eval()
with torch.no_grad():
    num_new_samples = len(X_patient)  # 生成与原始样本相同数量的数据
    noise = torch.randn(num_new_samples, LATENT_DIM).to(device)
    generated_data_scaled = generator(noise)

# 转换回原始尺度
generated_data = scaler.inverse_transform(generated_data_scaled.cpu().numpy())
python 复制代码
# 这里使用一个简单的分类器作为示例
from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=42)
clf.fit(X_train, y_train)
original_f1 = f1_score(y_test, clf.predict(X_test))

# 使用GAN生成数据后的评估
# 将生成的数据标记为1(心脏病)
generated_y = np.ones(len(generated_data))
# 合并原始数据和生成数据
X_augmented = np.vstack([X_train, generated_data])
y_augmented = np.hstack([y_train, generated_y])
python 复制代码
# 重新训练
clf.fit(X_augmented, y_augmented)
augmented_f1 = f1_score(y_test, clf.predict(X_test))

print(f"\n原始F1分数: {original_f1:.4f}")
print(f"使用GAN数据增强后F1分数: {augmented_f1:.4f}")

原始F1分数: 0.8400

使用GAN数据增强后F1分数: 0.8163

python 复制代码
# 6. 可视化部分特征对比
plt.figure(figsize=(12, 6))
for i in range(4):  # 只可视化前4个特征
    plt.subplot(2, 2, i+1)
    plt.hist(X_patient[:, i], bins=20, alpha=0.5, label='真实数据')
    plt.hist(generated_data[:, i], bins=20, alpha=0.5, label='生成数据')
    plt.title(f'特征 {i+1} 分布对比')
    plt.legend()
plt.tight_layout()
plt.show()

@浙大疏锦行

相关推荐
yanxing.D16 分钟前
OpenCV轻松入门_面向python(第六章 阈值处理)
人工智能·python·opencv·计算机视觉
JJJJ_iii1 小时前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
Python图像识别4 小时前
71_基于深度学习的布料瑕疵检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
千码君20165 小时前
React Native:从react的解构看编程众多语言中的解构
java·javascript·python·react native·react.js·解包·解构
淮北4946 小时前
windows安装minicoda
windows·python·conda
哥布林学者7 小时前
吴恩达深度学习课程一:神经网络和深度学习 第三周:浅层神经网络(二)
深度学习·ai
weixin_519535777 小时前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a7 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
生命是有光的8 小时前
【深度学习】神经网络基础
人工智能·深度学习·神经网络
技术闲聊DD8 小时前
机器学习(1)- 机器学习简介
人工智能·机器学习