【第一章:人工智能基础】04.数学建模基本方法-(1)优化问题与线性规划

第一章 人工智能基础

第四部分:数学建模基本方法

第一节:优化问题与线性规划

内容:目标函数、约束条件,单纯形法的基本原理。


一、什么是优化问题

优化问题(Optimization Problem)是指在给定条件下 ,对一个目标函数进行最大化或最小化。

一般形式为:

python 复制代码
目标函数:    Max 或 Min  f(x)  
约束条件:    g₁(x) ≤ b₁  
              g₂(x) = b₂  
              ...
变量范围:    x ∈ ℝⁿ,或 x ≥ 0 等

二、线性规划(Linear Programming)

线性规划是一类特殊的优化问题,要求:

  • 目标函数是线性的

  • 约束条件是线性等式或不等式

标准形式:
python 复制代码
Maximize:      z = c₁x₁ + c₂x₂ + ... + cₙxₙ  
Subject to:    a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁  
               ...
               aₘ₁x₁ + aₘ₂x₂ + ... + aₘₙxₙ ≤ bₘ  
               x₁, x₂, ..., xₙ ≥ 0

其中:

  • x₁...xₙ 是决策变量

  • z 是目标函数

  • 系数矩阵 aᵢⱼ、常数向量 bᵢ 和目标函数系数 cⱼ 均为已知常量


三、几何理解(二维情况下)

在二维空间中,每个约束条件对应一条直线,将空间划分为可行区域

目标函数的值在可行区域边界某个点达到最优。


四、单纯形法(Simplex Method)原理简介

单纯形法是一种高效的线性规划算法 ,通过从一个可行解出发,在可行区域的边界上沿"边"移动,逐步寻找最优解。

基本流程:
  1. 将线性规划转化为标准形式

  2. 引入松弛变量(将 ≤ 转为等式)

  3. 构造初始单纯形表

  4. 选择进入基变量(即改善方向)

  5. 选择离基变量(保持可行性)

  6. 迭代直到所有目标系数 ≤ 0(最优)

特点:
  • 适用于中小规模问题

  • 可以在"有限步"内找到最优解(若存在)

  • 时间复杂度最坏为指数级,但实际表现优良


示例(简化版)

问题:

Maximize z = 3x + 2y

Subject to:

复制代码
x + y ≤ 4  
x ≤ 2  
y ≤ 3  
x, y ≥ 0

解法思路:

  1. 绘制约束线,找出可行区域

  2. 在可行区域顶点处代入目标函数求值

  3. 取最大值即为最优解(例如 x=2, y=2)


总结表格:
概念 描述
目标函数 需要优化(最大化/最小化)的数学表达式
约束条件 限制决策变量的线性等式/不等式
可行解 满足所有约束的变量取值组合
最优解 在可行解中使目标函数最优的解
单纯形法 沿边界迭代求最优解的线性规划算法
应用领域 工程调度、资源分配、物流运输、经济管理、生产计划等
相关推荐
留意_yl9 分钟前
量化感知训练(QAT)流程
人工智能
山烛26 分钟前
KNN 算法中的各种距离:从原理到应用
人工智能·python·算法·机器学习·knn·k近邻算法·距离公式
盲盒Q36 分钟前
《频率之光:归途之光》
人工智能·硬件架构·量子计算
墨染点香1 小时前
第七章 Pytorch构建模型详解【构建CIFAR10模型结构】
人工智能·pytorch·python
go54631584651 小时前
基于分组规则的Excel数据分组优化系统设计与实现
人工智能·学习·生成对抗网络·数学建模·语音识别
茫茫人海一粒沙1 小时前
vLLM 的“投机取巧”:Speculative Decoding 如何加速大语言模型推理
人工智能·语言模型·自然语言处理
诗酒当趁年华1 小时前
【NLP实践】二、自训练数据实现中文文本分类并提供RestfulAPI服务
人工智能·自然语言处理·分类
静心问道1 小时前
Idefics3:构建和更好地理解视觉-语言模型:洞察与未来方向
人工智能·多模态·ai技术应用
sheep88881 小时前
AI与区块链Web3技术融合:重塑数字经济的未来格局
人工智能·区块链
奋进的孤狼2 小时前
【Spring AI】阿里云DashScope灵积模型
人工智能·spring·阿里云·ai·云计算