Prompt管理技巧

"Prompt工程"(Prompt Engineering)是指设计和优化提示词(prompt)以引导大型语言模型(如ChatGPT、GPT-4等)生成更符合预期输出的过程和方法。它是一种利用语言模型的能力,通过构造特定的输入,来达到高质量输出的技术手段。

Jinja2 是一个用来生成动态网页内容的 Python 模板引擎,它的主要作用是将 Python 中的数据渲染到 HTML 页面中。但在本项目中jinja2可以用于自动化生成prompt模板。

Prompter

null 复制代码
from pathlib import Path
from jinja2 import Environment, FileSystemLoader
from typing import Dict, Any

class PromptEngine:
    def __init__(self, template_dir: str = "prompts"):
        self.env = Environment(
            loader=FileSystemLoader(template_dir),
            trim_blocks=True,
            lstrip_blocks=True
        )
    
    def render(self, template_name: str, variables: Dict[str, Any]) -> str:
        template = self.env.get_template(f"{template_name}.jinja2")
        return template.render(**variables)

prompt_engine = PromptEngine()

代码首先指明了存放prompt的目录,然后根据template_name找到对应的prompt,再将对应的属性进行填充。

示例prompt

python 复制代码
#predict
你是中华人民共和国最高人民法院的一位资深刑事审判法官,请你根据下方【案件事实】、【相关法条】进行法律分析,并严格按照下方【分析要求】撰写分析意见,适用于刑期量化与判决指导。

【案件事实】
{{fact}}

【相关法条】
{{context}}

【撰写要求】
1. 禁止使用"可能""大致"等模糊措辞,需做出明确、定量的法律判断。
2. 禁止引用未在《刑法》《司法解释》明示规定的酌定情节。
3. 所有刑期须在法定幅度内给出,表述方式为"X年X月"。
4. 金额需具体精确到"元",不得使用"约""大约"等模糊词。
5. 若为死刑案件,必须引用《刑法》第四十八条。
6. 若为经济犯罪,需说明违法所得数额及其计算方式。
7. 若为共同犯罪,必须区分主犯、从犯及其责任承担,并说明定罪量刑差异。


【结束符号】

其中的案件描述以及相关法条就需要进行填充。

相关法条通过使用rag技术查询语义相关的法条,然后输入模型对结果进行预测

【结束符号】用于标注结果,将模型的输出于prompt分开

相关推荐
顺丰同城前端技术团队1 分钟前
掌握未来:构建专属领域的大模型与私有知识库——从部署到微调的全面指南
人工智能·deepseek
许泽宇的技术分享4 分钟前
用.NET9+Blazor+Semantic Kernel,打造企业级AI知识库和智能体平台——AntSK深度解读
人工智能
烟锁池塘柳024 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
一尘之中37 分钟前
全素山药开发指南:从防痒处理到高可用食谱架构
人工智能
加油吧zkf1 小时前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf1 小时前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
峙峙峙1 小时前
线性代数--AI数学基础复习
人工智能·线性代数
weiwuxian1 小时前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee1 小时前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域2 小时前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源