1.读取数据
使用CIFAR-10图像数据
            
            
              python
              
              
            
          
          import torch
from torchvision import datasets, transforms
# 定义图像预处理流程
image_transform = transforms.Compose([
    transforms.ToTensor(),  # 将PIL图像转换为张量
    transforms.Normalize(mean=(0.5, 0.5, 0.5),  # RGB三通道均值
                         std=(0.5, 0.5, 0.5))   # RGB三通道标准差
])
# 获取训练数据集
trainset = datasets.CIFAR10(
    root='./data',  # 数据集存储路径
    train=True,     # 使用训练集
    transform=image_transform,
    download=True   # 如果本地不存在则下载
)
# 获取测试数据集
testset = datasets.CIFAR10(
    root='./data',
    train=False,    # 使用测试集
    transform=image_transform,
    download=True
)
# 配置数据加载器
train_loader = torch.utils.data.DataLoader(
    dataset=trainset,
    batch_size=128,    # 每批样本数量
    shuffle=True       # 训练时打乱顺序
)
test_loader = torch.utils.data.DataLoader(
    dataset=testset,
    batch_size=128,
    shuffle=False      # 测试时保持原始顺序
)
        2.模型建立
(1)建立CNN模型
            
            
              python
              
              
            
          
          import torch
import torch.nn as nn
 
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
        self.fc1 = nn.Linear(32 * 8 * 8, 256)
        self.fc2 = nn.Linear(256, 10)
        self.relu = nn.ReLU()
 
    def forward(self, x):
        x = self.pool(self.relu(self.conv1(x)))  # 16x16x16
        x = self.pool(self.relu(self.conv2(x)))  # 32x8x8
        x = x.view(-1, 32 * 8 * 8)
        x = self.relu(self.fc1(x))
        x = self.fc2(x)
        return x