G2打卡——人脸图像生成

一、设置超参数并导入数据

python 复制代码
import torch, random, random, os
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML

manualSeed = 999  # 随机种子
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
torch.use_deterministic_algorithms(True) # Needed for reproducible results

dataroot = "data/GAN"  # 数据路径
batch_size = 128  # 训练过程中的批次大小
image_size = 64   # 图像的尺寸(宽度和高度)
nz  = 100         # z潜在向量的大小(生成器输入的尺寸)
ngf = 64          # 生成器中的特征图大小
ndf = 64          # 判别器中的特征图大小
num_epochs = 50   # 训练的总轮数,如果你显卡不太行,可调小,但是生成效果会随之降低
lr    = 0.0002    # 学习率
beta1 = 0.5       # Adam优化器的Beta1超参数

# 创建数据集
dataset = dset.ImageFolder(root=dataroot,
                           transform=transforms.Compose([
                           transforms.Resize(image_size),        # 调整图像大小
                           transforms.CenterCrop(image_size),    # 中心裁剪图像
                           transforms.ToTensor(),                # 将图像转换为张量
                           transforms.Normalize((0.5, 0.5, 0.5), # 标准化图像张量
                                                (0.5, 0.5, 0.5)),
                           ]))

# 创建数据加载器
dataloader = torch.utils.data.DataLoader(dataset, 
                                         batch_size=batch_size,  # 批量大小
                                         shuffle=True,           # 是否打乱数据集
                                         num_workers=5 # 使用多个线程加载数据的工作进程数
                                        )

# 选择要在哪个设备上运行代码
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
print("使用的设备是:",device)

# 绘制一些训练图像
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:24], 
                                         padding=2, 
                                         normalize=True).cpu(),(1,2,0)))

二、模型定义

python 复制代码
# 自定义权重初始化函数,作用于netG和netD
def weights_init(m):
    # 获取当前层的类名
    classname = m.__class__.__name__
    # 如果类名中包含'Conv',即当前层是卷积层
    if classname.find('Conv') != -1:
        # 使用正态分布初始化权重数据,均值为0,标准差为0.02
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    # 如果类名中包含'BatchNorm',即当前层是批归一化层
    elif classname.find('BatchNorm') != -1:
        # 使用正态分布初始化权重数据,均值为1,标准差为0.02
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        # 使用常数初始化偏置项数据,值为0
        nn.init.constant_(m.bias.data, 0)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.main = nn.Sequential(
            # 输入为Z,经过一个转置卷积层
            nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),  # 批归一化层,用于加速收敛和稳定训练过程
            nn.ReLU(True),  # ReLU激活函数
            # 输出尺寸:(ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.ReLU(True),
            # 输出尺寸:(ngf*4) x 8 x 8
            nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.ReLU(True),
            # 输出尺寸:(ngf*2) x 16 x 16
            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.ReLU(True),
            # 输出尺寸:(ngf) x 32 x 32
            nn.ConvTranspose2d(ngf, 3, 4, 2, 1, bias=False),
            nn.Tanh()  # Tanh激活函数
            # 输出尺寸:3 x 64 x 64
        )

    def forward(self, input):
        return self.main(input)

# 创建生成器
netG = Generator().to(device)
# 使用 "weights_init" 函数对所有权重进行随机初始化,
# 平均值(mean)设置为0,标准差(stdev)设置为0.02。
netG.apply(weights_init)
# 打印生成器模型
print(netG)

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()

        # 定义判别器的主要结构,使用Sequential容器将多个层按顺序组合在一起
        self.main = nn.Sequential(
            # 输入大小为3 x 64 x 64
            nn.Conv2d(3, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出大小为(ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出大小为(ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出大小为(ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # 输出大小为(ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        # 将输入通过判别器的主要结构进行前向传播
        return self.main(input)

# 创建判别器模型
netD = Discriminator().to(device)

# 应用 "weights_init" 函数来随机初始化所有权重
# 使用 mean=0, stdev=0.2 的方式进行初始化
netD.apply(weights_init)

# 打印模型
print(netD)

三、训练数据

python 复制代码
img_list = []  # 用于存储生成的图像列表
G_losses = []  # 用于存储生成器的损失列表
D_losses = []  # 用于存储判别器的损失列表
iters = 0  # 迭代次数

print("Starting Training Loop...")  # 输出训练开始的提示信息
# 对于每个epoch(训练周期)
for epoch in range(num_epochs):
    # 对于dataloader中的每个batch
    for i, data in enumerate(dataloader, 0):
        
        ############################
        # (1) 更新判别器网络:最大化 log(D(x)) + log(1 - D(G(z)))
        ###########################
        ## 使用真实图像样本训练
        netD.zero_grad()  # 清除判别器网络的梯度
        # 准备真实图像的数据
        real_cpu = data[0].to(device)
        b_size = real_cpu.size(0)
        label = torch.full((b_size,), real_label, dtype=torch.float, device=device)  # 创建一个全是真实标签的张量
        # 将真实图像样本输入判别器,进行前向传播
        output = netD(real_cpu).view(-1)
        # 计算真实图像样本的损失
        errD_real = criterion(output, label)
        # 通过反向传播计算判别器的梯度
        errD_real.backward()
        D_x = output.mean().item()  # 计算判别器对真实图像样本的输出的平均值

        ## 使用生成图像样本训练
        # 生成一批潜在向量
        noise = torch.randn(b_size, nz, 1, 1, device=device)
        # 使用生成器生成一批假图像样本
        fake = netG(noise)
        label.fill_(fake_label)  # 创建一个全是假标签的张量
        # 将所有生成的图像样本输入判别器,进行前向传播
        output = netD(fake.detach()).view(-1)
        # 计算判别器对生成图像样本的损失
        errD_fake = criterion(output, label)
        # 通过反向传播计算判别器的梯度
        errD_fake.backward()
        D_G_z1 = output.mean().item()  # 计算判别器对生成图像样本的输出的平均值
        # 计算判别器的总损失,包括真实图像样本和生成图像样本的损失之和
        errD = errD_real + errD_fake
        # 更新判别器的参数
        optimizerD.step()

        ############################
        # (2) 更新生成器网络:最大化 log(D(G(z)))
        ###########################
        netG.zero_grad()  # 清除生成器网络的梯度
        label.fill_(real_label)  # 对于生成器成本而言,将假标签视为真实标签
        # 由于刚刚更新了判别器,再次将所有生成的图像样本输入判别器,进行前向传播
        output = netD(fake).view(-1)
        # 根据判别器的输出计算生成器的损失
        errG = criterion(output, label)
        # 通过反向传播计算生成器的梯度
        errG.backward()
        D_G_z2 = output.mean().item()  # 计算判别器对生成器输出的平均值
        # 更新生成器的参数
        optimizerG.step()
        
        # 输出训练统计信息
        if i % 400 == 0:
            print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
                  % (epoch, num_epochs, i, len(dataloader),
                     errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
        
        # 保存损失值以便后续绘图
        G_losses.append(errG.item())
        D_losses.append(errD.item())
        
        # 通过保存生成器在固定噪声上的输出来检查生成器的性能
        if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
            with torch.no_grad():
                fake = netG(fixed_noise).detach().cpu()
            img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
            
        iters += 1

四、可视化

python 复制代码
plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()

# 创建一个大小为8x8的图形对象
fig = plt.figure(figsize=(8, 8))

# 不显示坐标轴
plt.axis("off")

# 将图像列表img_list中的图像转置并创建一个包含每个图像的单个列表ims
ims = [[plt.imshow(np.transpose(i, (1, 2, 0)), animated=True)] for i in img_list]

# 使用图形对象、图像列表ims以及其他参数创建一个动画对象ani
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)

# 将动画以HTML形式呈现
HTML(ani.to_jshtml())

# 从数据加载器中获取一批真实图像
real_batch = next(iter(dataloader))

# 绘制真实图像
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))

# 绘制上一个时期生成的假图像
plt.subplot(1,2,2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()

总结:

一、设置超参数并导入数据

  • 初始化了随机种子manualSeed以确保结果的可重复性。
  • 定义了多个超参数,如批量大小batch_size、图像尺寸image_size、潜在向量大小nz等。
  • 使用torchvision.datasets.ImageFolder和一系列转换操作来加载和预处理数据集。
  • 创建了一个数据加载器dataloader用于高效地分批次加载数据,并根据可用情况选择了设备(CPU或CUDA)。

二、模型定义

  • 自定义权重初始化函数weights_init,为生成器和判别器的各层赋予特定的初始权重。
  • 定义了生成器Generator和判别器Discriminator类,分别由多个卷积层(对于生成器还包括转置卷积层)组成。
  • 通过应用自定义的权重初始化函数来初始化生成器和判别器的权重,并打印了这两个模型的结构。

三、训练过程

  • 设定了用于存储损失值和生成图像的列表。
  • 在每个epoch中,对dataloader中的每个batch进行判别器和生成器的更新:首先通过真实图像和假图像样本更新判别器,然后使用生成的假图像样本更新生成器。
  • 在训练过程中定期输出训练统计信息,并保存生成器在固定噪声上的输出以便后续可视化。

四、可视化

  • 绘制了训练过程中生成器和判别器的损失变化曲线。
  • 创建了一个动画,展示了随着训练进程生成器输出的演变。
  • 对比展示了真实图像与最后一个epoch中生成的假图像。
相关推荐
虾球xz4 小时前
CppCon 2016 学习:GAME ENGINE USING C++11
大数据·开发语言·c++·学习
Jet45054 小时前
第100+42步 ChatGPT学习:R语言实现阈值调整
开发语言·学习·chatgpt·r语言
虾球xz4 小时前
CppCon 2016 学习:fixed_point Library
开发语言·c++·学习
HaiQinyanAN4 小时前
【学习笔记】nlohmannjson&&cjson
c++·笔记·学习·json
苏苏susuus4 小时前
深度学习:张量标量概念、PyTorch张量创建、类型转换等
人工智能·pytorch·深度学习
寄思~5 小时前
Python学习笔记:错误和异常处理
开发语言·笔记·python·学习
茯苓gao5 小时前
小孙学变频学习笔记(二)变频器的逆变电路
笔记·嵌入式硬件·学习
Code季风5 小时前
学习 Protobuf:序列化、反序列化及与 JSON 的对比
学习·rpc·golang·json
虾球xz6 小时前
CppCon 2016 学习:The Exception Situation
开发语言·c++·学习