原文链接:Spring AI Alibaba Graph:中断!人类反馈介入,流程丝滑走完~
教程说明
说明:本教程将采用2025年5月20日正式的GA版,给出如下内容
- 核心功能模块的快速上手教程
- 核心功能模块的源码级解读
- Spring ai alibaba增强的快速上手教程 + 源码级解读
版本:JDK21 + SpringBoot3.4.5 + SpringAI 1.0.0 + SpringAI Alibaba 1.0.0.2
将陆续完成如下章节教程。本章是第十章(Graph构建智能体)下的人类反馈复原案例
代码开源如下:github.com/GTyingzi/sp...

微信推文往届解读可参考:
第一章内容
SpringAI(GA)的chat:快速上手+自动注入源码解读
第二章内容
SpringAI(GA):Sqlite、Mysql、Redis消息存储快速上手
第三章内容
第四章内容
第五章内容
SpringAI(GA):内存、Redis、ES的向量数据库存储---快速上手
SpringAI(GA):向量数据库理论源码解读+Redis、Es接入源码
第六章内容
第七章内容
SpringAI(GA): SpringAI下的MCP源码解读
第八章内容
第九章内容
第十章内容
Spring AI Alibaba Graph:多节点并行---快速上手
Spring AI Alibaba Graph:节点流式透传案例
Spring AI Alibaba Graph:分配MCP到指定节点
人类反馈复原案例
!TIP\] 在实际业务场景中,经常会遇到人类介入的场景,人类的不同操作将影响工作流不同的走向
以下实现一个简单案例:包含三个节点,扩展节点、人类节点、翻译节点
- 扩展节点:AI 模型流式对问题进行扩展输出
- 人类节点:通过对用户的反馈,决定是直接结束,还是接着执行翻译节点
- 翻译节点:将问题翻译为其他英文
实战代码可见:github.com/GTyingzi/sp... 下的 graph 目录,本章代码为其 human-node 模块
pom.xml
这里使用 1.0.0.3-SNAPSHOT。在定义 StateGraph 方面和 1.0.0.2 有些变动
xml
<properties>
<spring-ai-alibaba.version>1.0.0.3-SNAPSHOT</spring-ai-alibaba.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-autoconfigure-model-openai</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-autoconfigure-model-chat-client</artifactId>
</dependency>
<dependency>
<groupId>com.alibaba.cloud.ai</groupId>
<artifactId>spring-ai-alibaba-graph-core</artifactId>
<version>${spring-ai-alibaba.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
</dependencies>
application.yml
yaml
server:
port: 8080
spring:
application:
name: human-node
ai:
openai:
api-key: ${AIDASHSCOPEAPIKEY}
base-url: https://dashscope.aliyuncs.com/compatible-mode
chat:
options:
model: qwen-max
config
OverAllState 中存储的字段
- query:用户的问题
- expandernumber:扩展的数量
- expandercontent:扩展的内容
- feedback:人类反馈的内容
- humannextnode:人类反馈后的下一个节点
- translatelanguage:翻译的目标语言,默认为英文
- translatecontent:翻译的内容
定义 ExpanderNode,边的连接为:
java
START -> expander -> humanfeedback
humanfeedback -> translate
humanfeedback -> END
translate -> END
java
package com.spring.ai.tutorial.graph.human.config;
import com.alibaba.cloud.ai.graph.GraphRepresentation;
import com.alibaba.cloud.ai.graph.KeyStrategy;
import com.alibaba.cloud.ai.graph.KeyStrategyFactory;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.action.AsyncEdgeAction;
import com.alibaba.cloud.ai.graph.exception.GraphStateException;
import com.alibaba.cloud.ai.graph.state.strategy.ReplaceStrategy;
import com.spring.ai.tutorial.graph.human.dispatcher.HumanFeedbackDispatcher;
import com.spring.ai.tutorial.graph.human.node.ExpanderNode;
import com.spring.ai.tutorial.graph.human.node.HumanFeedbackNode;
import com.spring.ai.tutorial.graph.human.node.TranslateNode;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.HashMap;
import java.util.Map;
import static com.alibaba.cloud.ai.graph.action.AsyncNodeAction.nodeasync;
/**
* @author yingzi
* @since 2025/6/13
*/
@Configuration
public class GraphHumanConfiguration {
private static final Logger logger = LoggerFactory.getLogger(GraphHumanConfiguration.class);
@Bean
public StateGraph humanGraph(ChatClient.Builder chatClientBuilder) throws GraphStateException {
KeyStrategyFactory keyStrategyFactory = () -> {
HashMap<String, KeyStrategy> keyStrategyHashMap = new HashMap<>();
// 用户输入
keyStrategyHashMap.put("query", new ReplaceStrategy());
keyStrategyHashMap.put("threadid", new ReplaceStrategy());
keyStrategyHashMap.put("expandernumber", new ReplaceStrategy());
keyStrategyHashMap.put("expandercontent", new ReplaceStrategy());
// 人类反馈
keyStrategyHashMap.put("feedback", new ReplaceStrategy());
keyStrategyHashMap.put("humannextnode", new ReplaceStrategy());
// 是否需要翻译
keyStrategyHashMap.put("translatelanguage", new ReplaceStrategy());
keyStrategyHashMap.put("translatecontent", new ReplaceStrategy());
return keyStrategyHashMap;
};
StateGraph stateGraph = new StateGraph(keyStrategyFactory)
.addNode("expander", nodeasync(new ExpanderNode(chatClientBuilder)))
.addNode("translate", nodeasync(new TranslateNode(chatClientBuilder)))
.addNode("humanfeedback", nodeasync(new HumanFeedbackNode()))
.addEdge(StateGraph.START, "expander")
.addEdge("expander", "humanfeedback")
.addConditionalEdges("humanfeedback", AsyncEdgeAction.edgeasync((new HumanFeedbackDispatcher())), Map.of(
"translate", "translate", StateGraph.END, StateGraph.END))
.addEdge("translate", StateGraph.END);
// 添加 PlantUML 打印
GraphRepresentation representation = stateGraph.getGraph(GraphRepresentation.Type.PLANTUML,
"human flow");
logger.info("\n=== expander UML Flow ===");
logger.info(representation.content());
logger.info("==================================\n");
return stateGraph;
}
}
node
ExpanderNode
java
package com.spring.ai.tutorial.graph.human.node;
import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.action.NodeAction;
import com.alibaba.cloud.ai.graph.async.AsyncGenerator;
import com.alibaba.cloud.ai.graph.streaming.StreamingChatGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.PromptTemplate;
import reactor.core.publisher.Flux;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* @author yingzi
* @since 2025/6/13
*/
public class ExpanderNode implements NodeAction {
private static final Logger logger = LoggerFactory.getLogger(ExpanderNode.class);
private static final PromptTemplate DEFAULTPROMPTTEMPLATE = new PromptTemplate("You are an expert at information retrieval and search optimization.\nYour task is to generate {number} different versions of the given query.\n\nEach variant must cover different perspectives or aspects of the topic,\nwhile maintaining the core intent of the original query. The goal is to\nexpand the search space and improve the chances of finding relevant information.\n\nDo not explain your choices or add any other text.\nProvide the query variants separated by newlines.\n\nOriginal query: {query}\n\nQuery variants:\n");
private final ChatClient chatClient;
private final Integer NUMBER = 3;
public ExpanderNode(ChatClient.Builder chatClientBuilder) {
this.chatClient = chatClientBuilder.build();
}
@Override
public Map<String, Object> apply(OverAllState state) {
logger.info("expander node is running.");
String query = state.value("query", "");
Integer expanderNumber = state.value("expandernumber", this.NUMBER);
Flux<ChatResponse> chatResponseFlux = this.chatClient.prompt().user((user) -> user.text(DEFAULTPROMPTTEMPLATE.getTemplate()).param("number", expanderNumber).param("query", query)).stream().chatResponse();
AsyncGenerator<? extends NodeOutput> generator = StreamingChatGenerator.builder()
.startingNode("expanderllmstream")
.startingState(state)
.mapResult(response -> {
String text = response.getResult().getOutput().getText();
List<String> queryVariants = Arrays.asList(text.split("\n"));
return Map.of("expandercontent", queryVariants);
}).build(chatResponseFlux);
return Map.of("expandercontent", generator);
}
}
HumanFeedbackNode
java
package com.spring.ai.tutorial.graph.human.node;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.action.NodeAction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.HashMap;
import java.util.Map;
/**
* @author yingzi
* @since 2025/6/19
*/
public class HumanFeedbackNode implements NodeAction {
private static final Logger logger = LoggerFactory.getLogger(HumanFeedbackNode.class);
@Override
public Map<String, Object> apply(OverAllState state) {
logger.info("humanfeedback node is running.");
HashMap<String, Object> resultMap = new HashMap<>();
String nextStep = StateGraph.END;
Map<String, Object> feedBackData = state.humanFeedback().data();
boolean feedback = (boolean) feedBackData.getOrDefault("feedback", true);
if (feedback) {
nextStep = "translate";
}
resultMap.put("humannextnode", nextStep);
logger.info("humanfeedback node -> {} node", nextStep);
return resultMap;
}
}
TranslateNode
java
package com.spring.ai.tutorial.graph.human.node;
import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.action.NodeAction;
import com.alibaba.cloud.ai.graph.async.AsyncGenerator;
import com.alibaba.cloud.ai.graph.streaming.StreamingChatGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.PromptTemplate;
import reactor.core.publisher.Flux;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* @author yingzi
* @since 2025/6/13
*/
public class TranslateNode implements NodeAction {
private static final Logger logger = LoggerFactory.getLogger(ExpanderNode.class);
private static final PromptTemplate DEFAULTPROMPTTEMPLATE = new PromptTemplate("Given a user query, translate it to {targetLanguage}.\nIf the query is already in {targetLanguage}, return it unchanged.\nIf you don't know the language of the query, return it unchanged.\nDo not add explanations nor any other text.\n\nOriginal query: {query}\n\nTranslated query:\n");
private final ChatClient chatClient;
private final String TARGETLANGUAGE= "English";
public TranslateNode(ChatClient.Builder chatClientBuilder) {
this.chatClient = chatClientBuilder.build();
}
@Override
public Map<String, Object> apply(OverAllState state) {
logger.info("translate node is running.");
String query = state.value("query", "");
String targetLanguage = state.value("translatelanguage", TARGETLANGUAGE);
Flux<ChatResponse> chatResponseFlux = this.chatClient.prompt().user((user) -> user.text(DEFAULTPROMPTTEMPLATE.getTemplate()).param("targetLanguage", targetLanguage).param("query", query)).stream().chatResponse();
AsyncGenerator<? extends NodeOutput> generator = StreamingChatGenerator.builder()
.startingNode("translatellmstream")
.startingState(state)
.mapResult(response -> {
String text = response.getResult().getOutput().getText();
List<String> queryVariants = Arrays.asList(text.split("\n"));
return Map.of("translatecontent", queryVariants);
}).build(chatResponseFlux);
return Map.of("translatecontent", generator);
}
}
edge
人类节点的下一个边是条件边,由 HumanFeedbackDispatcher 控制下一步跳转到哪一个节点
java
package com.spring.ai.tutorial.graph.human.dispatcher;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.action.EdgeAction;
/**
* @author yingzi
* @since 2025/6/19
*/
public class HumanFeedbackDispatcher implements EdgeAction {
@Override
public String apply(OverAllState state) throws Exception {
return (String) state.value("humannextnode", StateGraph.END);
}
}
controller
GraphHumanController
- CompileConfig.builder().saverConfig(saverConfig).interruptBefore("humanfeedback"):在人类反馈节点前断流
- Sinks.Many<ServerSentEvent> sink:接收 Stream 数据
java
package com.spring.ai.tutorial.graph.human.controller;
import com.alibaba.cloud.ai.graph.CompileConfig;
import com.alibaba.cloud.ai.graph.CompiledGraph;
import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.RunnableConfig;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.async.AsyncGenerator;
import com.alibaba.cloud.ai.graph.checkpoint.config.SaverConfig;
import com.alibaba.cloud.ai.graph.checkpoint.constant.SaverConstant;
import com.alibaba.cloud.ai.graph.checkpoint.savers.MemorySaver;
import com.alibaba.cloud.ai.graph.exception.GraphRunnerException;
import com.alibaba.cloud.ai.graph.exception.GraphStateException;
import com.alibaba.cloud.ai.graph.state.StateSnapshot;
import com.spring.ai.tutorial.graph.human.controller.GraphProcess.GraphProcess;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.http.MediaType;
import org.springframework.http.codec.ServerSentEvent;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Flux;
import reactor.core.publisher.Sinks;
import java.util.HashMap;
import java.util.Map;
/**
* @author yingzi
* @since 2025/6/13
*/
@RestController
@RequestMapping("/graph/human")
public class GraphHumanController {
private static final Logger logger = LoggerFactory.getLogger(GraphHumanController.class);
private final CompiledGraph compiledGraph;
@Autowired
public GraphHumanController(@Qualifier("humanGraph") StateGraph stateGraph) throws GraphStateException {
SaverConfig saverConfig = SaverConfig.builder().register(SaverConstant.MEMORY, new MemorySaver()).build();
this.compiledGraph = stateGraph
.compile(CompileConfig.builder().saverConfig(saverConfig).interruptBefore("humanfeedback").build()); }
@GetMapping(value = "/expand", produces = MediaType.TEXTEVENTSTREAMVALUE)
public Flux<ServerSentEvent<String>> expand(@RequestParam(value = "query", defaultValue = "你好,很高兴认识你,能简单介绍一下自己吗?", required = false) String query,
@RequestParam(value = "expandernumber", defaultValue = "3", required = false) Integer expanderNumber,
@RequestParam(value = "threadid", defaultValue = "yingzi", required = false) String threadId) throws GraphRunnerException {
RunnableConfig runnableConfig = RunnableConfig.builder().threadId(threadId).build();
Map<String, Object> objectMap = new HashMap<>();
objectMap.put("query", query);
objectMap.put("expandernumber", expanderNumber);
GraphProcess graphProcess = new GraphProcess(this.compiledGraph);
Sinks.Many<ServerSentEvent<String>> sink = Sinks.many().unicast().onBackpressureBuffer();
AsyncGenerator<NodeOutput> resultFuture = compiledGraph.stream(objectMap, runnableConfig);
graphProcess.processStream(resultFuture, sink);
return sink.asFlux()
.doOnCancel(() -> logger.info("Client disconnected from stream"))
.doOnError(e -> logger.error("Error occurred during streaming", e));
}
@GetMapping(value = "/resume", produces = MediaType.TEXTEVENTSTREAMVALUE)
public Flux<ServerSentEvent<String>> resume(@RequestParam(value = "threadid", defaultValue = "yingzi", required = false) String threadId,
@RequestParam(value = "feedback", defaultValue = "true", required = false) boolean feedBack) throws GraphRunnerException {
RunnableConfig runnableConfig = RunnableConfig.builder().threadId(threadId).build();
StateSnapshot stateSnapshot = this.compiledGraph.getState(runnableConfig);
OverAllState state = stateSnapshot.state();
state.withResume();
Map<String, Object> objectMap = new HashMap<>();
objectMap.put("feedback", feedBack);
state.withHumanFeedback(new OverAllState.HumanFeedback(objectMap, ""));
// Create a unicast sink to emit ServerSentEvents
Sinks.Many<ServerSentEvent<String>> sink = Sinks.many().unicast().onBackpressureBuffer();
GraphProcess graphProcess = new GraphProcess(this.compiledGraph);
AsyncGenerator<NodeOutput> resultFuture = compiledGraph.streamFromInitialNode(state, runnableConfig);
graphProcess.processStream(resultFuture, sink);
return sink.asFlux()
.doOnCancel(() -> logger.info("Client disconnected from stream"))
.doOnError(e -> logger.error("Error occurred during streaming", e)); }
}
GraphProcess
- ExecutorService executor:配置线程池,获取 stream 流
将结果写入到 sink 中
java
package com.spring.ai.tutorial.graph.stream.controller.GraphProcess;
import com.alibaba.cloud.ai.graph.CompiledGraph;
import com.alibaba.cloud.ai.graph.NodeOutput;
import com.alibaba.cloud.ai.graph.streaming.StreamingOutput;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import org.bsc.async.AsyncGenerator;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.http.codec.ServerSentEvent;
import reactor.core.publisher.Sinks;
import java.util.Map;
import java.util.concurrent.CompletionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class GraphProcess {
private static final Logger logger = LoggerFactory.getLogger(GraphProcess.class);
private final ExecutorService executor = Executors.newSingleThreadExecutor();
private CompiledGraph compiledGraph;
public GraphProcess(CompiledGraph compiledGraph) {
this.compiledGraph = compiledGraph;
}
public void processStream(AsyncGenerator<NodeOutput> generator, Sinks.Many<ServerSentEvent<String>> sink) {
executor.submit(() -> {
generator.forEachAsync(output -> {
try {
logger.info("output = {}", output);
String nodeName = output.node();
String content;
if (output instanceof StreamingOutput streamingOutput) {
content = JSON.toJSONString(Map.of(nodeName, streamingOutput.chunk()));
} else {
JSONObject nodeOutput = new JSONObject();
nodeOutput.put("data", output.state().data());
nodeOutput.put("node", nodeName);
content = JSON.toJSONString(nodeOutput);
}
sink.tryEmitNext(ServerSentEvent.builder(content).build());
} catch (Exception e) {
throw new CompletionException(e);
}
}).thenAccept(v -> {
// 正常完成
sink.tryEmitComplete();
}).exceptionally(e -> {
sink.tryEmitError(e);
return null;
});
});
}
}
效果
调用 expand 接口,流式输出 && 断流得到最终结果

再调用 resume 接口,状态恢复续上流,接着走后续逻辑

学习交流圈
你好,我是影子,曾先后在🐻、新能源、老铁就职,现在是一名AI研发工程师,同时作为Spring AI Alibaba开源社区的Committer。目前新建了一个交流群,一个人走得快,一群人走得远,另外,本人长期维护一套飞书云文档笔记,涵盖后端、大数据系统化的面试资料,可私信免费获取

