DL___线性神经网络

1)回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

2)一般回归是和预测有关,比如预测价格(房屋,股票等)

3)线性回归的基本元素

首先,假设自变量x和因变量y之间的关系是线性的, 即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

4)深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集 上的损失达到最小。 事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失, 这一挑战被称为泛化(generalization)。

5)对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连, 我们将这种变换(图中的输出层) 称为全连接层 (fully-connected layer)或称为稠密层(dense layer)

**最小化均方误差(MSE)等价于对线性模型进行极大似然估计(MLE)**,这句话的意思是:在高斯噪声的假设下,通过最小化均方误差(MSE)来优化线性回归模型参数,和通过极大似然估计(MLE)来优化线性回归模型参数,这两种方法是等价的,即它们最终会得到相同的模型参数估计结果。

  • 机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。

  • 矢量化使数学表达上更简洁,同时运行的更快。

  • 最小化目标函数和执行极大似然估计等价。

  • 线性回归模型也是一个简单的神经网络。

相关推荐
CaracalTiger1 小时前
HTTP 协议的基本概念(请求/响应流程、状态码、Header、方法)问题解决方案大全
开发语言·网络·python·深度学习·网络协议·http·pip
2401_888567002 小时前
Mac电脑-人工智能图像处理-降噪-Topaz Photo AI
图像处理·人工智能
棱镜研途2 小时前
学习笔记丨数字信号处理(DSP)的应用——图像处理篇
图像处理·人工智能·信号处理
西猫雷婶2 小时前
python学智能算法(十三)|机器学习朴素贝叶斯方法进阶-简单二元分类
开发语言·人工智能·python·深度学习·机器学习·矩阵·分类
Web3_Daisy2 小时前
Solana 一键冷分仓机制解析:如何低成本实现代币控盘打散?
大数据·人工智能·web3·区块链
杭州泽沃电子科技有限公司2 小时前
母线槽接头过热隐患难防?在线测温方案实时守护电力安全
网络·人工智能·安全
荣5823 小时前
python打卡day35
人工智能
舒一笑4 小时前
基础RAG实现,最佳入门选择(六)
人工智能
甜辣uu4 小时前
第七届人工智能技术与应用国际学术会议
人工智能·ei会议·中文核心·国际学术会议