DL___线性神经网络

1)回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

2)一般回归是和预测有关,比如预测价格(房屋,股票等)

3)线性回归的基本元素

首先,假设自变量x和因变量y之间的关系是线性的, 即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

4)深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集 上的损失达到最小。 事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失, 这一挑战被称为泛化(generalization)。

5)对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连, 我们将这种变换(图中的输出层) 称为全连接层 (fully-connected layer)或称为稠密层(dense layer)

**最小化均方误差(MSE)等价于对线性模型进行极大似然估计(MLE)**,这句话的意思是:在高斯噪声的假设下,通过最小化均方误差(MSE)来优化线性回归模型参数,和通过极大似然估计(MLE)来优化线性回归模型参数,这两种方法是等价的,即它们最终会得到相同的模型参数估计结果。

  • 机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。

  • 矢量化使数学表达上更简洁,同时运行的更快。

  • 最小化目标函数和执行极大似然估计等价。

  • 线性回归模型也是一个简单的神经网络。

相关推荐
Fine姐16 分钟前
数据挖掘2.1&2.2 分类和线性判别器&确定线性可分性
人工智能·分类·数据挖掘
倔强青铜三27 分钟前
GIL竟是Python命中注定的解药?统治AI时代的核心秘密!
人工智能·python·ai编程
倔强青铜三31 分钟前
大揭秘!Python类没有真正私有属性的原因
人工智能·python·ai编程
stars1 小时前
数字人开发02--前端服务配置
前端·人工智能
好多渔鱼好多1 小时前
【语音技术】意图与语料
人工智能·智能家居·智能互联·语音技术·影音开发·意图
无风听海1 小时前
理解梯度在神经网络中的应用
人工智能·深度学习·神经网络·梯度
仪器科学与传感技术博士1 小时前
python:前馈人工神经网络算法之实战篇,以示例带学,弄明白神经网络算法应用的思路、方法与注意事项等
人工智能·python·深度学习·神经网络·算法·机器学习
测试者家园1 小时前
用 LLM 辅助性能测试报告生成
人工智能·llm·性能测试·ai赋能·智能化测试
爱分享的飘哥2 小时前
第三十七章:文生图的炼金术:Stable Diffusion完整工作流深度解析
人工智能·pytorch·stable diffusion·文生图·ai绘画·代码实战·cfg
宸津-代码粉碎机4 小时前
LLM 模型部署难题的技术突破:从轻量化到分布式推理的全栈解决方案
java·大数据·人工智能·分布式·python