DL___线性神经网络

1)回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

2)一般回归是和预测有关,比如预测价格(房屋,股票等)

3)线性回归的基本元素

首先,假设自变量x和因变量y之间的关系是线性的, 即y可以表示为x中元素的加权和,这里通常允许包含观测值的一些噪声; 其次,我们假设任何噪声都比较正常,如噪声遵循正态分布。

4)深度学习实践者很少会去花费大力气寻找这样一组参数,使得在训练集 上的损失达到最小。 事实上,更难做到的是找到一组参数,这组参数能够在我们从未见过的数据上实现较低的损失, 这一挑战被称为泛化(generalization)。

5)对于线性回归,每个输入都与每个输出(在本例中只有一个输出)相连, 我们将这种变换(图中的输出层) 称为全连接层 (fully-connected layer)或称为稠密层(dense layer)

**最小化均方误差(MSE)等价于对线性模型进行极大似然估计(MLE)**,这句话的意思是:在高斯噪声的假设下,通过最小化均方误差(MSE)来优化线性回归模型参数,和通过极大似然估计(MLE)来优化线性回归模型参数,这两种方法是等价的,即它们最终会得到相同的模型参数估计结果。

  • 机器学习模型中的关键要素是训练数据、损失函数、优化算法,还有模型本身。

  • 矢量化使数学表达上更简洁,同时运行的更快。

  • 最小化目标函数和执行极大似然估计等价。

  • 线性回归模型也是一个简单的神经网络。

相关推荐
Codebee12 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º13 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys13 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567813 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子13 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能14 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448714 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能
Howie Zphile14 小时前
全面预算管理难以落地的核心真相:“完美模型幻觉”的认知误区
人工智能·全面预算
人工不智能57714 小时前
拆解 BERT:Output 中的 Hidden States 到底藏了什么秘密?
人工智能·深度学习·bert
盟接之桥14 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造