NVIDIA开源Fast-dLLM!解析分块KV缓存与置信度感知并行解码技术

Talk主页:http://qingkeai.online/

文章原文:https://mp.weixin.qq.com/s/P0PIAMo1GVYH4mdWdIde_Q

Fast-dLLM 是NVIDIA联合香港大学、MIT等机构推出的扩散大语言模型推理加速方案。

复制代码
论文:Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
链接:http://arxiv.org/abs/2505.22618
代码:https://github.com/NVlabs/Fast-dLLM
项目主页:https://nvlabs.github.io/Fast-dLLM

其通过分块KV缓存与置信度感知并行解码技术,在无需重新训练模型的前提下,实现了推理速度的突破性提升------在LLaDA模型1024 token长文本生成任务中,端到端推理速度狂飙27.6倍,整体耗时从266秒压缩至12秒,且主流基准测试准确率损失控制在2%以内。

该方案兼具零训练成本与多模型兼容性,为扩散模型在长文本生成、实时交互等场景的落地提供了高效可行的优化路径。

港大&NV&MIT开源Fast-dLLM:无需重新训练模型,直接提升扩散语言模型的推理效率

6月24日晚8点 ,青稞Talk 第57期,香港大学MMLab博士生吴成岳,将直播分享《Fast-dLLM:无需重训的扩散大语言模型推理加速》。

分享嘉宾

吴成岳,香港大学MMLab博士生,导师为罗平老师和王文平老师,研究方向为多模态大模型,发表高水平学术论文十余篇,一作发表包括ICML,ACL,CVPR等业内顶级会议,2项发明专利申请中,开源项目GitHub获stars 18k+,谷歌学术引用723次,获得国家奖学金,香港政府奖学金,香港大学校长奖学金以及黑龙江省优秀毕业生,哈尔滨工业大学优秀毕业论文等荣誉,担任TPAMI,CVPR等多个顶刊顶会审稿人。

主题提纲

Fast-dLLM:无需重训的扩散大语言模型推理加速

1、扩散大语言模型推理难点

2、Fast-dLLM 核心技术解析:

  • 分块 KV 缓存

  • 置信度感知并行解码

3、在 LLaDA、Dream 模型上的性能验证及应用实践

直播时间

6月24日20:00 - 21:00

相关推荐
学习的学习者12 分钟前
CS课程项目设计1:交互友好的井字棋游戏
人工智能·课程设计·井字棋游戏
Jenny26 分钟前
数据预处理与清洗
人工智能
LucianaiB27 分钟前
AI 时代的分布式多模态数据处理实践:我的 ODPS 实践之旅、思考与展望
大数据·数据仓库·人工智能·分布式·odps
阿里云大数据AI技术42 分钟前
如何在 Elasticsearch 中构建你的智能 AI 助手?
运维·人工智能·elasticsearch
Kookoos1 小时前
ABP VNext + 多级缓存架构:本地 + Redis + CDN
redis·缓存·微服务·架构·abp vnext
Hao想睡觉1 小时前
机器学习之逻辑回归和k-means算法(六)
人工智能·算法·机器学习·逻辑回归
贾全1 小时前
从LLM到VLM:视觉语言模型的核心技术与Python实现
人工智能·python·ai·机器人·视觉语言模型·vlm
杜莱1 小时前
IDEA 安装AI代码助手GitHub Copilot和简单使用体验
人工智能·github·intellij-idea
AI扶我青云志1 小时前
BERT系列模型
人工智能·深度学习·bert
静心问道1 小时前
VISUALBERT:一个简单且高效的视觉与语言基线模型
人工智能·多模态·ai技术应用