【Python小练习】3D散点图

资产风险收益三维分析

背景

王老师是一名金融工程研究员,需要对多个资产的预期收益、风险(波动率)和与市场的相关性进行综合分析,以便为投资组合优化提供决策依据。

代码实现

python 复制代码
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

plt.rcParams['font.sans-serif'] = ['SimHei']   # 设置中文字体为黑体
plt.rcParams['axes.unicode_minus'] = False     # 正常显示负号
# 3D资产收益-风险-相关性分析图
# 该代码用于绘制三维散点图,展示不同资产的预期
# 假设有三种资产的数据
assets = ['资产A', '资产B', '资产C']
expected_return = [0.12, 0.08, 0.15]   # 预期收益率
volatility = [0.20, 0.10, 0.25]        # 波动率(风险)
correlation = [0.8, 0.5, 0.3]          # 与市场的相关系数

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# 绘制三维散点图
ax.scatter(expected_return, volatility, correlation, color='blue')

# 添加每个点的标签
for i in range(len(assets)):
    ax.text(expected_return[i], volatility[i], correlation[i], assets[i], fontsize=12)

ax.set_xlabel('预期收益率')
ax.set_ylabel('波动率(风险)')
ax.set_zlabel('与市场相关性')

plt.title('资产收益-风险-相关性三维分布')
plt.show()

提示:示例可能不具有现实意义,仅从技术应用上考虑。

参考

mpl_toolkits.mplot3d 提供了一些基本的 3D 绘图工具(散点图、曲面图、线图、网格图)。它并非市面上速度最快、功能最全面的 3D 绘图库,但它集成了 Matplotlib,因此在某些场景下可能是一个更轻量级的解决方案。更多信息,请参阅 mplot3d 教程 mplot3d 官方文档

分享内容对您有用的话记得点赞和收藏哦~~

相关推荐
岱宗夫up1 分钟前
Python 数据分析入门
开发语言·python·数据分析
多恩Stone1 分钟前
【3D AICG 系列-6】OmniPart 训练流程梳理
人工智能·pytorch·算法·3d·aigc
码界筑梦坊3 分钟前
325-基于Python的校园卡消费行为数据可视化分析系统
开发语言·python·信息可视化·django·毕业设计
asheuojj5 分钟前
2026年GEO优化获客效果评估指南:如何精准衡量TOP5关
大数据·人工智能·python
多恩Stone6 分钟前
【RoPE】Flux 中的 Image Tokenization
开发语言·人工智能·python
李日灐8 分钟前
C++进阶必备:红黑树从 0 到 1: 手撕底层,带你搞懂平衡二叉树的平衡逻辑与黑高检验
开发语言·数据结构·c++·后端·面试·红黑树·自平衡二叉搜索树
Risehuxyc17 分钟前
备份三个PHP程序
android·开发语言·php
lly20240623 分钟前
PHP Error: 常见错误及其解决方法
开发语言
网安墨雨24 分钟前
Python自动化一------pytes与allure结合生成测试报告
开发语言·自动化测试·软件测试·python·职场和发展·自动化
毕设源码李师姐26 分钟前
计算机毕设 java 基于 java 的图书馆借阅系统 智能图书馆借阅综合管理平台 基于 Java 的图书借阅与信息管理系统
java·开发语言·课程设计