【深度学习基础与概念】笔记(一)深度学习革命

datawhale组队学习,共读ai新圣经

一、深度学习革命的核心概念

  1. 机器学习 vs 深度学习

    • 机器学习:通过数据训练算法,替代传统手工设计规则(如分类、回归)
    • 深度学习:机器学习的分支,基于神经网络,模拟人脑信息处理机制,可处理高维复杂数据(如图像、语言)
    • 通用人工智能(AGI):大语言模型(如GPT-4)展现的跨任务能力被视为AGI雏形
  2. 关键术语对比

    概念 定义 示例
    监督学习 使用标注数据训练模型 皮肤癌分类、蛋白质结构预测
    无监督学习 从无标注数据中发现模式 人脸图像生成
    自监督学习 自动从数据中生成标签 大语言模型(预测下一个词)
    迁移学习 预训练模型微调适应新任务 医疗诊断模型复用日常图像特征

二、深度学习的四大应用场景

  1. 医疗诊断

    • 案例:黑色素瘤分类模型(准确率超专业医生)
    • **技术要点:**使用迁移学习解决数据稀缺
  2. 蛋白质结构预测

    • AlphaFold突破:通过氨基酸序列预测3D结构,误差接近实验测定水平
    • 意义:加速新药研发与生物过程理解。
  3. 图像合成

    生成式模型:如GAN、扩散模型,生成与训练数据统计特性一致的新样

  4. 大语言模型(LLM)

    核心机制:自回归预测(根据上文生成下文),通过海量文本自监督训练。


三、教学示例:多项式拟合中的机器学习原理

误差函数:用来确定多项式系数

  1. 过拟合与泛化

    • 问题:高阶多项式(如M=9)完美拟合训练数据但测试误差剧增。
    • 根源:模型复杂度过高,拟合了噪声而非真实规律。
  2. 正则化技术

    • 方法:在误差函数中添加权重惩罚项
    • 效果:抑制系数幅值,提升泛化能力
  3. 模型选择与验证

    • 交叉验证:将数据分为S份,轮流用S-1份训练、1份验证,避免过拟合(图1.12)。问题:模型训练成本大幅提升,与超参数结合训练成本指数级提高。
    • 超参数调优:通过验证集选择最佳多项式阶数M或正则化强度λ。

四、神经网络发展简史与技术突破

  1. 三个阶段演进

    • 单层网络(1950s-1980s):感知机受限(仅线性可分问题)。
    • 反向传播(1980s-2000s):引入梯度下降与可微激活函数,训练多层网络
    • 深度网络(2010s至今):GPU算力 + 大数据 + 架构创新(如残差连接)推动爆发
  2. 残差连接(ResNet)

    原理:学习残差而非直接映射,提高深层网络训练效率。

相关推荐
Ai财富密码2 小时前
机器学习 (ML) 基础入门指南
人工智能·神经网络·机器学习·机器人·ml
华科易迅2 小时前
人工智能学习38-VGG训练
人工智能·学习·人工智能学习38-vgg训练
W说编程3 小时前
算法导论第二十四章 深度学习前沿:从序列建模到创造式AI
c语言·人工智能·python·深度学习·算法·性能优化
HollowKnightZ3 小时前
论文阅读笔记:Digging Into Self-Supervised Monocular Depth Estimation
论文阅读·笔记
输出>输入3 小时前
verilog HDLBits刷题“Module shift8”--模块 shift8---模块和向量
笔记
hao_wujing4 小时前
RNN工作原理和架构
人工智能
大模型铲屎官4 小时前
【深度学习-Day 31】CNN基石:彻底搞懂卷积层 (Convolutional Layer) 的工作原理
人工智能·pytorch·python·深度学习·机器学习·cnn·llm
算法如诗5 小时前
Stacking集成BP神经网络/RF/SVM和遗传算法的煤炭配比优化
人工智能·神经网络·支持向量机
观默5 小时前
我用AI造了个“懂我家娃”的育儿助手
前端·人工智能·产品