构建一个结合AI功能实现智能的Redis哨兵切换检测和处理的简单实例

基于最新的Spring AI框架能力,构建一个结合AI智能检测的Redis哨兵切换监控系统的简单实现:

1. 项目依赖配置

xml 复制代码
<dependencies>
    <!-- Spring Boot 基础依赖 -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    
    <!-- Spring AI 核心依赖 -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-core</artifactId>
        <version>1.0.0</version>
    </dependency>
    
    <!-- Spring AI OpenAI 集成 -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
        <version>1.0.0</version>
    </dependency>
    
    <!-- Redis 相关依赖 -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-data-redis</artifactId>
    </dependency>
    
    <!-- Spring AI Redis Vector Store -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-redis-store</artifactId>
        <version>1.0.0</version>
    </dependency>
    
    <!-- 监控和指标 -->
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-actuator</artifactId>
    </dependency>
    
    <dependency>
        <groupId>io.micrometer</groupId>
        <artifactId>micrometer-registry-prometheus</artifactId>
    </dependency>
</dependencies>

2. 配置文件

yaml 复制代码
spring:
  ai:
    openai:
      api-key: ${OPENAI_API_KEY}
      chat:
        options:
          model: gpt-4
          temperature: 0.1
    vectorstore:
      redis:
        uri: redis://localhost:6379
        index: "redis-monitoring-vectors"
        prefix: "ai:monitoring:"
        
  data:
    redis:
      sentinel:
        master: mymaster
        nodes:
          - 192.168.1.10:26379
          - 192.168.1.11:26379
          - 192.168.1.12:26379
      timeout: 2000ms
      lettuce:
        pool:
          max-active: 20
          max-idle: 8
          min-idle: 2

# AI 监控配置
redis:
  ai:
    monitoring:
      enabled: true
      analysis-interval: 30s
      anomaly-threshold: 0.8
      prediction-window: 300s
      alert-threshold: 0.9

management:
  endpoints:
    web:
      exposure:
        include: health,metrics,prometheus
  metrics:
    export:
      prometheus:
        enabled: true

3. AI智能监控核心实现

java 复制代码
@Component
@Slf4j
public class AIRedisMonitoringService {
    
    private final ChatClient chatClient;
    private final RedisTemplate<String, Object> redisTemplate;
    private final VectorStore vectorStore;
    private final MeterRegistry meterRegistry;
    private final RedisAnomalyPredictor anomalyPredictor;
    
    public AIRedisMonitoringService(ChatClient.Builder chatClientBuilder,
                                   RedisTemplate<String, Object> redisTemplate,
                                   VectorStore vectorStore,
                                   MeterRegistry meterRegistry,
                                   RedisAnomalyPredictor anomalyPredictor) {
        this.chatClient = chatClientBuilder.build();
        this.redisTemplate = redisTemplate;
        this.vectorStore = vectorStore;
        this.meterRegistry = meterRegistry;
        this.anomalyPredictor = anomalyPredictor;
    }
    
    /**
     * AI驱动的Redis健康状态分析
     */
    @Scheduled(fixedDelay = 30000)
    public void performAIHealthAnalysis() {
        try {
            // 1. 收集Redis指标数据
            RedisMetrics metrics = collectRedisMetrics();
            
            // 2. 使用AI分析当前状态
            HealthAssessment assessment = analyzeHealthWithAI(metrics);
            
            // 3. 异常预测
            AnomalyPrediction prediction = anomalyPredictor.predictAnomaly(metrics);
            
            // 4. 存储分析结果到向量数据库
            storeAnalysisResults(assessment, prediction, metrics);
            
            // 5. 处理告警和自动修复
            handleAlertsAndAutoRemediation(assessment, prediction);
            
            log.debug("AI健康分析完成 - 状态: {}, 风险等级: {}", 
                     assessment.getStatus(), assessment.getRiskLevel());
                     
        } catch (Exception e) {
            log.error("AI健康分析失败", e);
            meterRegistry.counter("redis.ai.analysis.error").increment();
        }
    }
    
    private RedisMetrics collectRedisMetrics() {
        return RedisMetrics.builder()
            .responseTime(measureResponseTime())
            .connectionCount(getConnectionCount())
            .memoryUsage(getMemoryUsage())
            .replicationLag(getReplicationLag())
            .sentinelStatus(getSentinelStatus())
            .errorRate(getErrorRate())
            .throughput(getThroughput())
            .timestamp(Instant.now())
            .build();
    }
    
    private HealthAssessment analyzeHealthWithAI(RedisMetrics metrics) {
        String prompt = String.format("""
            作为Redis专家,请分析以下Redis集群指标并评估健康状态:
            
            指标数据:
            - 响应时间: %d ms
            - 连接数: %d
            - 内存使用率: %.2f%%
            - 复制延迟: %d ms  
            - 哨兵状态: %s
            - 错误率: %.4f%%
            - 吞吐量: %d ops/sec
            
            请提供:
            1. 整体健康状态评级 (HEALTHY/WARNING/CRITICAL)
            2. 风险等级 (LOW/MEDIUM/HIGH/CRITICAL)
            3. 关键问题识别
            4. 具体的改进建议
            5. 是否需要立即干预
            
            请以JSON格式返回结果。
            """, 
            metrics.getResponseTime(),
            metrics.getConnectionCount(),
            metrics.getMemoryUsage(),
            metrics.getReplicationLag(),
            metrics.getSentinelStatus(),
            metrics.getErrorRate(),
            metrics.getThroughput()
        );
        
        try {
            String response = chatClient.prompt()
                .user(prompt)
                .call()
                .content();
                
            return parseHealthAssessment(response);
            
        } catch (Exception e) {
            log.error("AI分析失败,使用默认评估", e);
            return createFallbackAssessment(metrics);
        }
    }
    
    private HealthAssessment parseHealthAssessment(String aiResponse) {
        try {
            ObjectMapper mapper = new ObjectMapper();
            JsonNode jsonResponse = mapper.readTree(aiResponse);
            
            return HealthAssessment.builder()
                .status(HealthStatus.valueOf(jsonResponse.get("status").asText()))
                .riskLevel(RiskLevel.valueOf(jsonResponse.get("riskLevel").asText()))
                .issues(parseIssues(jsonResponse.get("issues")))
                .recommendations(parseRecommendations(jsonResponse.get("recommendations")))
                .requiresImmediateAction(jsonResponse.get("requiresImmediateAction").asBoolean())
                .confidence(jsonResponse.get("confidence").asDouble())
                .timestamp(Instant.now())
                .build();
                
        } catch (Exception e) {
            log.error("解析AI响应失败", e);
            throw new AIAnalysisException("AI响应解析失败", e);
        }
    }
}

4. AI异常预测组件

java 复制代码
@Component
@Slf4j
public class RedisAnomalyPredictor {
    
    private final VectorStore vectorStore;
    private final ChatClient chatClient;
    private final List<RedisMetrics> historicalData = new ArrayList<>();
    
    public RedisAnomalyPredictor(VectorStore vectorStore, ChatClient.Builder chatClientBuilder) {
        this.vectorStore = vectorStore;
        this.chatClient = chatClientBuilder.build();
    }
    
    /**
     * 基于历史数据和AI模型预测异常
     */
    public AnomalyPrediction predictAnomaly(RedisMetrics currentMetrics) {
        try {
            // 1. 更新历史数据
            updateHistoricalData(currentMetrics);
            
            // 2. 特征工程 - 计算趋势和模式
            MetricsTrend trend = calculateTrend();
            
            // 3. 向量相似性搜索 - 查找历史相似场景
            List<Document> similarScenarios = findSimilarScenarios(currentMetrics);
            
            // 4. AI预测分析
            AnomalyPrediction prediction = performAIPrediction(currentMetrics, trend, similarScenarios);
            
            // 5. 存储预测结果
            storePredictionResult(prediction);
            
            return prediction;
            
        } catch (Exception e) {
            log.error("异常预测失败", e);
            return createFallbackPrediction();
        }
    }
    
    private List<Document> findSimilarScenarios(RedisMetrics metrics) {
        // 创建当前指标的向量表示
        String metricsText = String.format(
            "Redis指标: 响应时间=%dms 内存使用=%.2f%% 复制延迟=%dms 错误率=%.4f%%",
            metrics.getResponseTime(), metrics.getMemoryUsage(), 
            metrics.getReplicationLag(), metrics.getErrorRate()
        );
        
        // 执行相似性搜索
        return vectorStore.similaritySearch(
            SearchRequest.query(metricsText)
                .withTopK(5)
                .withSimilarityThreshold(0.7)
        );
    }
    
    private AnomalyPrediction performAIPrediction(RedisMetrics currentMetrics, 
                                                 MetricsTrend trend, 
                                                 List<Document> similarScenarios) {
        String prompt = createPredictionPrompt(currentMetrics, trend, similarScenarios);
        
        String response = chatClient.prompt()
            .user(prompt)
            .call()
            .content();
            
        return parsePredictionResponse(response);
    }
    
    private String createPredictionPrompt(RedisMetrics metrics, MetricsTrend trend, 
                                        List<Document> scenarios) {
        StringBuilder promptBuilder = new StringBuilder();
        promptBuilder.append("""
            作为Redis性能专家,请基于以下信息预测Redis集群在未来5分钟内的异常风险:
            
            当前指标:
            - 响应时间: %d ms (趋势: %s)
            - 内存使用: %.2f%% (趋势: %s)  
            - 复制延迟: %d ms (趋势: %s)
            - 错误率: %.4f%% (趋势: %s)
            - 连接数: %d (趋势: %s)
            
            """.formatted(
                metrics.getResponseTime(), trend.getResponseTimeTrend(),
                metrics.getMemoryUsage(), trend.getMemoryUsageTrend(),
                metrics.getReplicationLag(), trend.getReplicationLagTrend(),
                metrics.getErrorRate(), trend.getErrorRateTrend(),
                metrics.getConnectionCount(), trend.getConnectionTrend()
            ));
            
        if (!scenarios.isEmpty()) {
            promptBuilder.append("历史相似场景:\n");
            scenarios.forEach(doc -> 
                promptBuilder.append("- ").append(doc.getContent()).append("\n")
            );
        }
        
        promptBuilder.append("""
            
            请预测并返回JSON格式结果,包含:
            1. anomalyProbability: 异常概率 (0-1)
            2. predictedIssues: 可能出现的问题列表
            3. timeToAnomaly: 预计多久后出现异常(秒)
            4. recommendedActions: 建议的预防措施
            5. confidence: 预测置信度 (0-1)
            """);
            
        return promptBuilder.toString();
    }
}

5. 智能故障自动修复

java 复制代码
@Component
@Slf4j
public class AIAutoRemediationService {
    
    private final ChatClient chatClient;
    private final RedisTemplate<String, Object> redisTemplate;
    private final RedisOperations redisOperations;
    
    public AIAutoRemediationService(ChatClient.Builder chatClientBuilder,
                                   RedisTemplate<String, Object> redisTemplate,
                                   RedisOperations redisOperations) {
        this.chatClient = chatClientBuilder.build();
        this.redisTemplate = redisTemplate;
        this.redisOperations = redisOperations;
    }
    
    /**
     * AI驱动的自动故障修复
     */
    public RemediationResult performAutoRemediation(HealthAssessment assessment, 
                                                   AnomalyPrediction prediction) {
        if (!shouldPerformAutoRemediation(assessment, prediction)) {
            return RemediationResult.skipped("不满足自动修复条件");
        }
        
        try {
            // 1. AI生成修复方案
            RemediationPlan plan = generateRemediationPlan(assessment, prediction);
            
            // 2. 安全性检查
            if (!isSafeToExecute(plan)) {
                return RemediationResult.rejected("修复方案安全检查未通过");
            }
            
            // 3. 执行修复操作
            List<RemediationAction> executedActions = new ArrayList<>();
            for (RemediationAction action : plan.getActions()) {
                try {
                    executeRemediationAction(action);
                    executedActions.add(action);
                    log.info("修复操作执行成功: {}", action.getDescription());
                } catch (Exception e) {
                    log.error("修复操作执行失败: {}", action.getDescription(), e);
                    // 如果关键操作失败,可能需要回滚
                    if (action.isCritical()) {
                        rollbackActions(executedActions);
                        return RemediationResult.failed("关键修复操作失败,已回滚");
                    }
                }
            }
            
            return RemediationResult.success(executedActions);
            
        } catch (Exception e) {
            log.error("自动修复过程失败", e);
            return RemediationResult.failed("自动修复执行异常: " + e.getMessage());
        }
    }
    
    private RemediationPlan generateRemediationPlan(HealthAssessment assessment, 
                                                   AnomalyPrediction prediction) {
        String prompt = String.format("""
            作为Redis运维专家,请为以下问题生成自动修复方案:
            
            当前问题:
            %s
            
            预测风险:
            %s
            
            请生成安全的自动修复方案,返回JSON格式:
            {
                "actions": [
                    {
                        "type": "REDIS_CONFIG|MEMORY_CLEANUP|CONNECTION_LIMIT|FAILOVER",
                        "description": "操作描述",
                        "command": "具体执行命令",
                        "critical": true/false,
                        "estimatedImpact": "预计影响",
                        "rollbackCommand": "回滚命令"
                    }
                ],
                "estimatedDuration": "预计修复时间(秒)",
                "riskLevel": "LOW|MEDIUM|HIGH"
            }
            
            注意:只生成低风险的自动修复操作,高风险操作需要人工干预。
            """, 
            formatIssues(assessment.getIssues()),
            formatPrediction(prediction)
        );
        
        String response = chatClient.prompt()
            .user(prompt)
            .call()
            .content();
            
        return parseRemediationPlan(response);
    }
    
    private void executeRemediationAction(RemediationAction action) {
        switch (action.getType()) {
            case REDIS_CONFIG:
                executeRedisConfigChange(action);
                break;
            case MEMORY_CLEANUP:
                executeMemoryCleanup(action);
                break;
            case CONNECTION_LIMIT:
                executeConnectionLimitAdjustment(action);
                break;
            case FAILOVER:
                executeManagedFailover(action);
                break;
            default:
                throw new UnsupportedOperationException("不支持的修复操作类型: " + action.getType());
        }
    }
    
    private void executeRedisConfigChange(RemediationAction action) {
        // 安全的Redis配置调整
        String[] configParts = action.getCommand().split(" ");
        if (configParts.length >= 3 && "CONFIG".equals(configParts[0]) && "SET".equals(configParts[1])) {
            String configKey = configParts[2];
            String configValue = configParts[3];
            
            // 只允许安全的配置项调整
            if (isSafeConfigKey(configKey)) {
                redisTemplate.execute((RedisCallback<Object>) connection -> {
                    connection.configSet(configKey, configValue);
                    return null;
                });
                log.info("Redis配置已更新: {} = {}", configKey, configValue);
            }
        }
    }
    
    private void executeMemoryCleanup(RemediationAction action) {
        // 执行内存清理操作
        redisTemplate.execute((RedisCallback<Object>) connection -> {
            // 清理过期键
            connection.eval(
                "return redis.call('MEMORY', 'PURGE')", 
                ReturnType.INTEGER, 
                0
            );
            return null;
        });
        log.info("Redis内存清理完成");
    }
    
    private void executeManagedFailover(RemediationAction action) {
        // 受控的故障转移
        log.warn("执行受控故障转移");
        redisTemplate.execute((RedisCallback<Object>) connection -> {
            // 这里可以实现更复杂的故障转移逻辑
            // 例如:检查从节点状态,然后执行SENTINEL FAILOVER
            return null;
        });
    }
}

6. AI监控仪表板控制器

java 复制代码
@RestController
@RequestMapping("/api/redis/ai-monitoring")
@Slf4j
public class AIMonitoringController {
    
    private final AIRedisMonitoringService monitoringService;
    private final RedisAnomalyPredictor anomalyPredictor;
    private final AIAutoRemediationService remediationService;
    
    @GetMapping("/status")
    public ResponseEntity<AIMonitoringStatus> getCurrentStatus() {
        try {
            RedisMetrics metrics = monitoringService.getCurrentMetrics();
            HealthAssessment assessment = monitoringService.getLatestAssessment();
            AnomalyPrediction prediction = anomalyPredictor.getLatestPrediction();
            
            AIMonitoringStatus status = AIMonitoringStatus.builder()
                .metrics(metrics)
                .healthAssessment(assessment)
                .anomalyPrediction(prediction)
                .timestamp(Instant.now())
                .build();
                
            return ResponseEntity.ok(status);
        } catch (Exception e) {
            log.error("获取AI监控状态失败", e);
            return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
        }
    }
    
    @PostMapping("/analyze")
    public ResponseEntity<AnalysisResult> performManualAnalysis(@RequestBody AnalysisRequest request) {
        try {
            AnalysisResult result = monitoringService.performManualAnalysis(request);
            return ResponseEntity.ok(result);
        } catch (Exception e) {
            log.error("手动分析失败", e);
            return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
                .body(AnalysisResult.error("分析失败: " + e.getMessage()));
        }
    }
    
    @PostMapping("/remediation/trigger")
    public ResponseEntity<RemediationResult> triggerRemediation(@RequestBody RemediationRequest request) {
        try {
            if (!request.isConfirmed()) {
                return ResponseEntity.badRequest()
                    .body(RemediationResult.rejected("需要用户确认"));
            }
            
            HealthAssessment assessment = monitoringService.getLatestAssessment();
            AnomalyPrediction prediction = anomalyPredictor.getLatestPrediction();
            
            RemediationResult result = remediationService.performAutoRemediation(assessment, prediction);
            return ResponseEntity.ok(result);
            
        } catch (Exception e) {
            log.error("触发自动修复失败", e);
            return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)
                .body(RemediationResult.failed("修复触发失败: " + e.getMessage()));
        }
    }
    
    @GetMapping("/insights")
    public ResponseEntity<List<AIInsight>> getAIInsights(@RequestParam(defaultValue = "24") int hours) {
        try {
            List<AIInsight> insights = monitoringService.generateInsights(Duration.ofHours(hours));
            return ResponseEntity.ok(insights);
        } catch (Exception e) {
            log.error("获取AI洞察失败", e);
            return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).build();
        }
    }
}

7. 实时AI分析WebSocket

java 复制代码
@Component
@Slf4j
public class AIMonitoringWebSocketHandler extends TextWebSocketHandler {
    
    private final AIRedisMonitoringService monitoringService;
    private final Set<WebSocketSession> sessions = ConcurrentHashMap.newKeySet();
    
    @Override
    public void afterConnectionEstablished(WebSocketSession session) throws Exception {
        sessions.add(session);
        log.info("AI监控WebSocket连接建立: {}", session.getId());
        
        // 发送初始状态
        sendInitialStatus(session);
    }
    
    @Override
    public void afterConnectionClosed(WebSocketSession session, CloseStatus status) throws Exception {
        sessions.remove(session);
        log.info("AI监控WebSocket连接关闭: {}", session.getId());
    }
    
    @EventListener
    public void handleAIAnalysisComplete(AIAnalysisCompleteEvent event) {
        AIMonitoringUpdate update = AIMonitoringUpdate.builder()
            .type("ANALYSIS_COMPLETE")
            .assessment(event.getAssessment())
            .prediction(event.getPrediction())
            .timestamp(Instant.now())
            .build();
            
        broadcastUpdate(update);
    }
    
    @EventListener 
    public void handleAnomalyDetected(AnomalyDetectedEvent event) {
        AIMonitoringUpdate update = AIMonitoringUpdate.builder()
            .type("ANOMALY_DETECTED")
            .anomaly(event.getAnomaly())
            .severity(event.getSeverity())
            .timestamp(Instant.now())
            .build();
            
        broadcastUpdate(update);
    }
    
    private void broadcastUpdate(AIMonitoringUpdate update) {
        String message;
        try {
            message = new ObjectMapper().writeValueAsString(update);
        } catch (Exception e) {
            log.error("序列化监控更新失败", e);
            return;
        }
        
        sessions.forEach(session -> {
            try {
                if (session.isOpen()) {
                    session.sendMessage(new TextMessage(message));
                }
            } catch (Exception e) {
                log.error("发送WebSocket消息失败", e);
                sessions.remove(session);
            }
        });
    }
}

关键特性总结

这个AI增强的Redis监控系统提供了以下智能功能:

  1. AI健康分析: 利用Spring AI和Redis的集成能力,通过GPT模型分析Redis指标,提供专业的健康评估
  2. 异常预测: 基于历史数据和向量相似性搜索,预测潜在的系统问题
  3. 自动修复: AI生成安全的修复方案并自动执行低风险操作
  4. 实时监控: WebSocket实时推送AI分析结果和异常告警
  5. 智能洞察: 结合Micrometer观察能力,生成深度的系统运行洞察
  6. 向量存储: 利用Redis作为向量数据库存储历史分析结果,支持相似场景检索

这个案例将传统的Redis监控提升到了AI驱动的智能运维水平,能够主动发现问题、预测故障并自动修复,大大提高了系统的可靠性和运维效率。

相关推荐
白仑色1 小时前
完整 Spring Boot + Vue 登录系统
vue.js·spring boot·后端
MZ_ZXD0011 小时前
flask校园学科竞赛管理系统-计算机毕业设计源码12876
java·spring boot·python·spring·django·flask·php
小郭的学习日记3 小时前
互联网大厂Java面试:从Spring Boot到微服务的场景应用
spring boot·微服务·java面试·技术栈·电商平台
超级小忍3 小时前
在 Spring Boot 中使用 MyBatis 的 XML 文件编写 SQL 语句详解
xml·spring boot·mybatis
Q_Q19632884753 小时前
python的平安驾校管理系统
开发语言·spring boot·python·django·flask·node.js·php
在未来等你4 小时前
Redis面试精讲 Day 1:Redis核心特性与应用场景
数据库·redis·缓存·nosql·面试准备
超级小忍4 小时前
在 Spring Boot 中如何使用 Assert 进行断言校验
spring boot·后端
程序猿小D4 小时前
[附源码+数据库+毕业论文+答辩PPT+部署教程+配套软件]基于SpringBoot+MyBatis+MySQL+Maven+Vue实现的交流互动管理系统
spring boot·mysql·vue·mybatis·毕业论文·答辩ppt·交流互动
@航空母舰6 小时前
在 Spring Boot 中使用 WebMvcConfigurer
spring boot