机器学习模型:逻辑回归之计算概率

许多问题需要将概率估算值作为输出。 逻辑回归是 一种极其高效的概率计算机制。实际上,您可以通过以下两种方式使用返回的概率:

  • 按原样"应用。例如,如果垃圾邮件预测模型将电子邮件视为 输入并输出值 0.932,这表示概率为 93.2% 电子邮件是垃圾邮件。

  • 转换为二元类别,例如 True 或 False、Spam 或 Not Spam。

本单元重点介绍如何按原样使用逻辑回归模型输出。在"分类" 模块中,您将学习如何将此输出转换为二元类别。

▏S型函数****

您可能想知道逻辑回归模型如何确保其输出表示概率,始终输出介于 0 到 1 之间的值。由于 会发生一系列函数,这些函数称为逻辑函数 其输出具有相同的特征。标准逻辑函数, 也称为 S型函数sigmoid表示"s形"),其 公式:

f(x)=1/1+e−x

图 1 显示了 sigmoid 函数的相应图表。

- 图 1 -

S 型函数的图形。曲线接近 0 因为 x 值减少到负无穷大,而 1 则等于 x 值越接近无穷大。

随着输入 x 的增加,sigmoid 函数的输出会接近 1,但永远不会达到 1。同样,当输入值减小时,S 型函数值 函数的输出接近,但永远不会达到 0。

▏Sigmoid 函数背后的数学原理

使用 S 型函数转换线性输出

以下等式表示逻辑回归模型的线性组件:

z=b+w1x1+w2x2+...+wNxN

其中:

  • z 是线性方程的输出(也称为 对数几率)

  • b 是偏差

  • w 的值是模型学习的权重

  • x 的值是特定样本的特征值

要获得逻辑回归预测结果,请将 z 值传递给 S 型函数,将得到一个介于 0 到 1之间的值(概率):

y′=1/1+e−z

其中:

  • y′ 是逻辑回归模型的输出。

  • z 为线性输出(按上述等式计算得出)。

▏对数几率

图 2 说明了如何将线性输出转换为逻辑回归 输出结果。

- 图 2 -

左图:线性函数 z = 2x + 5,包含三个 突出显示的数据点

右图:三个点相同的 S 型曲线 通过 S 型函数转换后突出显示。

在图 2 中,线性方程会成为 S 型函数的输入,该函数会将直线弯曲成 S 形。请注意,线性方程 可以输出非常大或非常小的 z 值,但 S 型函数的输出 函数 y' 始终介于0 和 1 之间(不含 0 和 1)。例如,左侧图表中的黄色方块的 z 值为 -10,但右侧图表中的 S 型函数会将该 -10 映射为 y' 值0.00004。

相关推荐
honeysuckle_luo36 分钟前
RandLA-net-pytorch 复现
人工智能·pytorch·python
_BugMan2 小时前
【大模型】理论基础(1):函数与神经网络
人工智能·深度学习·神经网络
AI模块工坊3 小时前
CVPR 即插即用 | PConv:重新定义高效卷积,一个让模型“跑”得更快、更省的新范式
人工智能·深度学习·计算机视觉·transformer
lzjava20243 小时前
Spring AI加DeepSeek实现一个Prompt聊天机器人
人工智能·spring·prompt
fanstuck5 小时前
AI辅助数学建模有哪些优势?
人工智能·数学建模·语言模型·aigc
我爱钱因此会努力5 小时前
ansible自动化运维入门篇
linux·运维·服务器·centos·自动化·ansible
CIb0la5 小时前
能保持精神专注的爱好能给生活带来种种积极的转变
运维·学习·生活
一只安5 小时前
从零开发AI(不依赖任何模型)
人工智能·python
11年老程序猿在线搬砖5 小时前
如何搭建自己的量化交易平台
大数据·人工智能·python·自动交易·量化交易系统
Elastic 中国社区官方博客5 小时前
Elasticsearch 开放推理 API 增加了对 Google 的 Gemini 模型的支持
大数据·人工智能·elasticsearch·搜索引擎·ai·全文检索·googlecloud