机器学习模型:逻辑回归之计算概率

许多问题需要将概率估算值作为输出。 逻辑回归是 一种极其高效的概率计算机制。实际上,您可以通过以下两种方式使用返回的概率:

  • 按原样"应用。例如,如果垃圾邮件预测模型将电子邮件视为 输入并输出值 0.932,这表示概率为 93.2% 电子邮件是垃圾邮件。

  • 转换为二元类别,例如 True 或 False、Spam 或 Not Spam。

本单元重点介绍如何按原样使用逻辑回归模型输出。在"分类" 模块中,您将学习如何将此输出转换为二元类别。

▏S型函数****

您可能想知道逻辑回归模型如何确保其输出表示概率,始终输出介于 0 到 1 之间的值。由于 会发生一系列函数,这些函数称为逻辑函数 其输出具有相同的特征。标准逻辑函数, 也称为 S型函数sigmoid表示"s形"),其 公式:

f(x)=1/1+e−x

图 1 显示了 sigmoid 函数的相应图表。

- 图 1 -

S 型函数的图形。曲线接近 0 因为 x 值减少到负无穷大,而 1 则等于 x 值越接近无穷大。

随着输入 x 的增加,sigmoid 函数的输出会接近 1,但永远不会达到 1。同样,当输入值减小时,S 型函数值 函数的输出接近,但永远不会达到 0。

▏Sigmoid 函数背后的数学原理

使用 S 型函数转换线性输出

以下等式表示逻辑回归模型的线性组件:

z=b+w1x1+w2x2+...+wNxN

其中:

  • z 是线性方程的输出(也称为 对数几率)

  • b 是偏差

  • w 的值是模型学习的权重

  • x 的值是特定样本的特征值

要获得逻辑回归预测结果,请将 z 值传递给 S 型函数,将得到一个介于 0 到 1之间的值(概率):

y′=1/1+e−z

其中:

  • y′ 是逻辑回归模型的输出。

  • z 为线性输出(按上述等式计算得出)。

▏对数几率

图 2 说明了如何将线性输出转换为逻辑回归 输出结果。

- 图 2 -

左图:线性函数 z = 2x + 5,包含三个 突出显示的数据点

右图:三个点相同的 S 型曲线 通过 S 型函数转换后突出显示。

在图 2 中,线性方程会成为 S 型函数的输入,该函数会将直线弯曲成 S 形。请注意,线性方程 可以输出非常大或非常小的 z 值,但 S 型函数的输出 函数 y' 始终介于0 和 1 之间(不含 0 和 1)。例如,左侧图表中的黄色方块的 z 值为 -10,但右侧图表中的 S 型函数会将该 -10 映射为 y' 值0.00004。

相关推荐
啊吧怪不啊吧12 小时前
UU远程协助迎来升级!第一期更新实测
运维·服务器·远程工作
小鸡吃米…16 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫17 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)17 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan17 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维17 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS17 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd17 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟18 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然18 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析