融合LSTM与自注意力机制的多步光伏功率预测新模型解析

这篇论文《Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data》(2024, Applied Energy)聚焦在 多步光伏功率预测 中,如何结合 LSTM 与自注意力机制(self-attention),并 有效引入天气预报数据 来提升预测准确性。

论文核心思想(One-sentence summary)

本文提出一种融合 LSTM 和 Transformer 的混合预测模型 LSTMformer,首次系统性地将 历史与天气预报数据 融合输入,显著提升了光伏发电的多步预测准确性,特别适用于 中长期预测任务。

研究背景与问题

为什么要预测光伏功率?

光伏发电具有 随机性与波动性强 的特点,精确预测其输出是保障电网稳定、提高可再生能源接入率的关键。

现有方法存在的问题:

传统统计模型(ARIMA等) 对非平稳天气场景适应性差;

1.纯LSTM 在长序列预测中精度迅速下降;

2.Transformer 虽强大但不擅长建模时间依赖关系;

3.很少有模型有效利用天气"预报数据",多数仅用历史天气。

主要贡献与创新点

提出LSTMformer:LSTM+Self-Attention的混合架构

LSTM 处理时间序列特征

Transformer 捕捉多变量间的相关性

Attention 融合天气预报信息

→ 实现短期、长期预测双提升。

设计通用天气预报数据注入方式,适配多种模型架构(LSTM、seq2seq、Transformer);

历史数据 + 天气预报数据联合输入

无需复杂预处理,直接拼接或嵌入模型中

实证验证(2年5个月的真实建筑光伏数据):

LSTMformer相较传统LSTM:

长期预测R² 提升 22.5%,整体提升 26.4%

少量历史数据输入时也能保持高精度(1小时即可达R²=0.921)

实验设置

数据来源:日本千叶县浦安市某建筑实际监测数据(2020年11月~2023年3月)

特征:

光伏输出功率(PV Power)、GHI、温度、湿度、气压、风速、日照时长等共11个气象变量。

房屋太阳能光伏板的外观:

PV规格:

模型对比:LSTM、BiLSTM、seq2seq(带attention)、Transformer、LSTMformer

指标:RMSE、MAE、R²(决定系数)

关键实验结果

1.LSTMformer 综合指标最优;

2.即使在输入序列缩短(如仅输入1小时)时,LSTMformer依然保持高精度;

3.相比Transformer,LSTMformer更能结合时间序列依赖与变量间相关性,适合多步预测。

结语

在光伏功率预测任务中,单一依赖LSTM或Transformer已无法应对日益复杂的时间-变量关联模式。LSTMformer作为一种兼具时间建模能力与多变量建模能力的架构,在中长期预测中展现出强大优势。未来,如何进一步增强对天气预报误差的容忍性,是该方向继续演进的关键。

相关推荐
数据与人工智能律师3 分钟前
数字资产革命中的信任之锚:RWA法律架构的隐形密码
大数据·网络·人工智能·云计算·区块链
CHANG_THE_WORLD14 分钟前
封装一个png的编码解码操作
图像处理·人工智能·计算机视觉
赛丽曼27 分钟前
Assistant API的原理及应用
人工智能·chatgpt
Yo_Becky1 小时前
【PyTorch】PyTorch预训练模型缓存位置迁移,也可拓展应用于其他文件的迁移
人工智能·pytorch·经验分享·笔记·python·程序人生·其他
DeepSeek-大模型系统教程1 小时前
深入金融与多模态场景实战:金融文档分块技术与案例汇总
人工智能·ai·语言模型·程序员·大模型·大模型学习·大模型教程
xinxiangwangzhi_1 小时前
pytorch底层原理学习--PyTorch 架构梳理
人工智能·pytorch·架构
yzx9910131 小时前
关于网络协议
网络·人工智能·python·网络协议
AiTEN_Robot1 小时前
AGV 无人叉车关键技术问题解析:精准定位算法 / 安全避障逻辑 / 系统对接协议全方案
人工智能·机器人·自动化·制造
云天徽上1 小时前
【PaddleOCR】OCR常见关键信息抽取数据集,包含FUNSD、XFUND、WildReceipt等整理,持续更新中......
人工智能·计算机视觉·信息可视化·paddlepaddle·paddleocr·文本识别
zskj_zhyl1 小时前
智绅科技:以科技为翼,构建养老安全守护网
人工智能·科技·安全