Python打卡:Day46

复制代码
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import numpy as np
import matplotlib.pyplot as plt
import os

# 设置随机种子以确保结果可复现
torch.manual_seed(42)
np.random.seed(42)

# 1. 数据预处理
transform = transforms.Compose([
    transforms.ToTensor(),                # 转换为张量
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 标准化处理
])

# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(
    root='./data',
    train=True,
    download=True,
    transform=transform
)

test_dataset = datasets.CIFAR10(
    root='./data',
    train=False,
    transform=transform
)

# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

# CIFAR-10的类别名称
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 4. 定义MLP模型(适应CIFAR-10的输入尺寸)
class MLP(nn.Module):
    def __init__(self):
        super(MLP, self).__init__()
        self.flatten = nn.Flatten()  # 将3x32x32的图像展平为3072维向量
        self.layer1 = nn.Linear(3072, 512)  # 第一层:3072个输入,512个神经元
        self.relu1 = nn.ReLU()
        self.dropout1 = nn.Dropout(0.2)  # 添加Dropout防止过拟合
        self.layer2 = nn.Linear(512, 256)  # 第二层:512个输入,256个神经元
        self.relu2 = nn.ReLU()
        self.dropout2 = nn.Dropout(0.2)
        self.layer3 = nn.Linear(256, 10)  # 输出层:10个类别
        
    def forward(self, x):
        # 第一步:将输入图像展平为一维向量
        x = self.flatten(x)  # 输入尺寸: [batch_size, 3, 32, 32] → [batch_size, 3072]
        
        # 第一层全连接 + 激活 + Dropout
        x = self.layer1(x)   # 线性变换: [batch_size, 3072] → [batch_size, 512]
        x = self.relu1(x)    # 应用ReLU激活函数
        x = self.dropout1(x) # 训练时随机丢弃部分神经元输出
        
        # 第二层全连接 + 激活 + Dropout
        x = self.layer2(x)   # 线性变换: [batch_size, 512] → [batch_size, 256]
        x = self.relu2(x)    # 应用ReLU激活函数
        x = self.dropout2(x) # 训练时随机丢弃部分神经元输出
        
        # 第三层(输出层)全连接
        x = self.layer3(x)   # 线性变换: [batch_size, 256] → [batch_size, 10]
        
        return x  # 返回未经过Softmax的logits

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 初始化模型
model = MLP()
model = model.to(device)  # 将模型移至GPU(如果可用)

criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)  # Adam优化器

# 创建TensorBoard的SummaryWriter,指定日志保存目录
log_dir = 'runs/cifar10_mlp_experiment'
# 如果目录已存在,添加后缀避免覆盖
if os.path.exists(log_dir):
    i = 1
    while os.path.exists(f"{log_dir}_{i}"):
        i += 1
    log_dir = f"{log_dir}_{i}"
writer = SummaryWriter(log_dir)

# 5. 训练模型(使用TensorBoard记录各种信息)
def train(model, train_loader, test_loader, criterion, optimizer, device, epochs, writer):
    model.train()  # 设置为训练模式
    
    # 记录训练开始时间,用于计算训练速度
    global_step = 0
    
    # 可视化模型结构
    dataiter = iter(train_loader)
    images, labels = next(dataiter)
    images = images.to(device)
    writer.add_graph(model, images)  # 添加模型图
    
    # 可视化原始图像样本
    img_grid = torchvision.utils.make_grid(images[:8].cpu())
    writer.add_image('原始训练图像', img_grid)
    
    for epoch in range(epochs):
        running_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.to(device), target.to(device)  # 移至GPU
            
            optimizer.zero_grad()  # 梯度清零
            output = model(data)  # 前向传播
            loss = criterion(output, target)  # 计算损失
            loss.backward()  # 反向传播
            optimizer.step()  # 更新参数
            
            # 统计准确率和损失
            running_loss += loss.item()
            _, predicted = output.max(1)
            total += target.size(0)
            correct += predicted.eq(target).sum().item()
            
            # 每100个批次记录一次信息到TensorBoard
            if (batch_idx + 1) % 100 == 0:
                batch_loss = loss.item()
                batch_acc = 100. * correct / total
                
                # 记录标量数据(损失、准确率)
                writer.add_scalar('Train/Batch_Loss', batch_loss, global_step)
                writer.add_scalar('Train/Batch_Accuracy', batch_acc, global_step)
                
                # 记录学习率
                writer.add_scalar('Train/Learning_Rate', optimizer.param_groups[0]['lr'], global_step)
                
                # 每500个批次记录一次直方图(权重和梯度)
                if (batch_idx + 1) % 500 == 0:
                    for name, param in model.named_parameters():
                        writer.add_histogram(f'weights/{name}', param, global_step)
                        if param.grad is not None:
                            writer.add_histogram(f'grads/{name}', param.grad, global_step)
                
                print(f'Epoch: {epoch+1}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} '
                      f'| 单Batch损失: {batch_loss:.4f} | 累计平均损失: {running_loss/(batch_idx+1):.4f}')
            
            global_step += 1
        
        # 计算当前epoch的平均训练损失和准确率
        epoch_train_loss = running_loss / len(train_loader)
        epoch_train_acc = 100. * correct / total
        
        # 记录每个epoch的训练损失和准确率
        writer.add_scalar('Train/Epoch_Loss', epoch_train_loss, epoch)
        writer.add_scalar('Train/Epoch_Accuracy', epoch_train_acc, epoch)
        
        # 测试阶段
        model.eval()  # 设置为评估模式
        test_loss = 0
        correct_test = 0
        total_test = 0
        
        # 用于存储预测错误的样本
        wrong_images = []
        wrong_labels = []
        wrong_preds = []
        
        with torch.no_grad():
            for data, target in test_loader:
                data, target = data.to(device), target.to(device)
                output = model(data)
                test_loss += criterion(output, target).item()
                _, predicted = output.max(1)
                total_test += target.size(0)
                correct_test += predicted.eq(target).sum().item()
                
                # 收集预测错误的样本
                wrong_mask = (predicted != target).cpu()
                if wrong_mask.sum() > 0:
                    wrong_batch_images = data[wrong_mask].cpu()
                    wrong_batch_labels = target[wrong_mask].cpu()
                    wrong_batch_preds = predicted[wrong_mask].cpu()
                    
                    wrong_images.extend(wrong_batch_images)
                    wrong_labels.extend(wrong_batch_labels)
                    wrong_preds.extend(wrong_batch_preds)
        
        epoch_test_loss = test_loss / len(test_loader)
        epoch_test_acc = 100. * correct_test / total_test
        
        # 记录每个epoch的测试损失和准确率
        writer.add_scalar('Test/Loss', epoch_test_loss, epoch)
        writer.add_scalar('Test/Accuracy', epoch_test_acc, epoch)
        
        # 计算并记录训练速度(每秒处理的样本数)
        # 这里简化处理,假设每个epoch的时间相同
        samples_per_epoch = len(train_loader.dataset)
        # 实际应用中应该使用time.time()来计算真实时间
        
        print(f'Epoch {epoch+1}/{epochs} 完成 | 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%')
        
        # 可视化预测错误的样本(只在最后一个epoch进行)
        if epoch == epochs - 1 and len(wrong_images) > 0:
            # 最多显示8个错误样本
            display_count = min(8, len(wrong_images))
            wrong_img_grid = torchvision.utils.make_grid(wrong_images[:display_count])
            
            # 创建错误预测的标签文本
            wrong_text = []
            for i in range(display_count):
                true_label = classes[wrong_labels[i]]
                pred_label = classes[wrong_preds[i]]
                wrong_text.append(f'True: {true_label}, Pred: {pred_label}')
            
            writer.add_image('错误预测样本', wrong_img_grid)
            writer.add_text('错误预测标签', '\n'.join(wrong_text), epoch)
    
    # 关闭TensorBoard写入器
    writer.close()
    
    return epoch_test_acc  # 返回最终测试准确率

# 6. 执行训练和测试
epochs = 20  # 训练轮次
print("开始训练模型...")
print(f"TensorBoard日志保存在: {log_dir}")
print("训练完成后,使用命令 `tensorboard --logdir=runs` 启动TensorBoard查看可视化结果")

final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, device, epochs, writer)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")

@浙大疏锦行

相关推荐
我的xiaodoujiao6 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 24--数据驱动--参数化处理 Excel 文件 1
python·学习·测试工具·pytest
开心-开心急了22 分钟前
关于Flutter与Qt for python 的一些技术、开源、商用等问题
开发语言·python·qt·flutter
@小码农1 小时前
2025年北京海淀区中小学生信息学竞赛第一赛段试题(附答案)
人工智能·python·算法·蓝桥杯
Q_Q19632884751 小时前
python+django/flask基于机器学习的就业岗位推荐系统
spring boot·python·django·flask·node.js·php
AI科技星2 小时前
张祥前统一场论动量公式P=m(C-V)误解解答
开发语言·数据结构·人工智能·经验分享·python·线性代数·算法
海琴烟Sunshine2 小时前
leetcode 345. 反转字符串中的元音字母 python
python·算法·leetcode
ithicker2 小时前
Pycharm+Deepseek结合使用Continue插件无法返回中文产生乱码
ide·python·pycharm
棉猴3 小时前
《pygame中Sprite类实现多帧动画》注-通过多张序列帧显示动画2-1
python·游戏·pygame·游戏编程
权泽谦3 小时前
用 Python 做一个天气预报桌面小程序(附源码 + 打包与部署指导)
开发语言·python·小程序
“负拾捌”3 小时前
LangChain提示词模版 PromptTemplate
python·langchain·prompt