深度学习3(向量化编程+ python中实现逻辑回归)

目录

python中向量化编程

[常用操作(设:a=[1,2] , b=[3,4])](#常用操作(设:a=[1,2] , b=[3,4]))

python中实现逻辑回归

伪代码

代码实现


python中向量化编程

向量化编程(Vectorized Programming)是一种利用数组或矩阵运算替代显式循环 的高效编程范式,尤其在科学计算和机器学习中至关重要。而向量化编程在python中依靠numpy包实现。

一般引入格式为:import numpy as np

常用操作(设:a=[1,2] , b=[3,4])

函数 说明 示例
np.add() 逐元素加法 a + b[1+3, 2+4]
np.subtract() 逐元素减法 a - b[1-3, 2-4]
np.multiply() 逐元素乘法 a * b[1*3, 2*4]
np.divide() 逐元素除法 a / b[1/3, 2/4]
np.power() 幂运算 a**2[1, 4]
np.exp() 指数运算 e^a
np.log 对数计算 log(默认ln)

python中实现逻辑回归

伪代码

代码实现

python 复制代码
import numpy as np

# 初始化
num_iterations = 1000
learning_rate = 0.5
X = np.array([
    [1.2, 0.5],  # 样本1
    [-0.3, 1.8],  # 样本2
    [0.7, -1.1]  # 样本3
])
Y = np.array([[1, 0, 1]])  # 改为行向量以便计算
W = np.zeros((2, 1))  # 权重矩阵
b = 0.0  # 偏置项
costs = []  # 存储损失值历史


def sigmoid(x):
    """Sigmoid激活函数"""
    return 1 / (1 + np.exp(-x))


def propagate(W, b, X, Y):
    """
    前向传播和反向传播
    参数:
        W: 权重 (2,1)
        b: 偏置 (标量)
        X: 输入数据 (3,2)
        Y: 真实标签 (1,3)
    返回:
        grads: 包含梯度的字典
        cost: 当前损失值
    """
    m = X.shape[0]  # 样本数量

    # 前向传播
    Z = np.dot(X, W) + b  # (3,1)
    A = sigmoid(Z)  # (3,1)

    # 计算损失(添加极小值防止log(0))
    epsilon = 1e-5
    cost = -(1 / m) * np.sum(Y * np.log(A.T + epsilon) + (1 - Y) * np.log(1 - A.T + epsilon))

    # 反向传播
    dZ = A - Y.T  # (3,1)
    dW = (1 / m) * np.dot(X.T, dZ)  # (2,1)
    db = (1 / m) * np.sum(dZ)

    grads = {"dW": dW, "db": db}
    return grads, cost


def optimize(W, b, X, Y, num_iterations, learning_rate):
    """
    梯度下降优化
    参数:
        W, b: 初始参数
        X, Y: 训练数据和标签
        num_iterations: 迭代次数
        learning_rate: 学习率
    返回:
        params: 优化后的参数
        grads: 最终梯度
        costs: 损失历史
    """
    costs = []

    for i in range(num_iterations):
        # 计算梯度和损失
        grads, cost = propagate(W, b, X, Y)

        # 获取梯度
        dW = grads["dW"]
        db = grads["db"]

        # 更新参数
        W = W - learning_rate * dW
        b = b - learning_rate * db

        # 记录损失
        if i % 100 == 0:
            costs.append(cost)
            print(f"迭代次数 {i}: 损失值 = {cost:.6f}")

    params = {"W": W, "b": b}
    grads = {"dW": dW, "db": db}
    return params, grads, costs


def predict(W, b, X):
    """
    使用训练好的参数预测
    参数:
        W, b: 训练好的参数
        X: 输入数据
    返回:
        Y_prediction: 预测结果 (0或1)
    """
    m = X.shape[0]
    Y_prediction = np.zeros((1, m))

    A = sigmoid(np.dot(X, W) + b)

    for i in range(A.shape[0]):
        Y_prediction[0, i] = 1 if A[i] > 0.5 else 0

    return Y_prediction


if __name__ == '__main__':
    # 训练模型
    params, grads, costs = optimize(W, b, X, Y, num_iterations, learning_rate)

    # 获取训练好的参数
    W = params["W"]
    b = params["b"]

    # 预测
    Y_prediction = predict(W, b, X)
    print(f"预测结果: {Y_prediction}")
    print(f"真实标签: {Y}")

在代码实现时,很容易遇到因为数组维度的问题,导致向量化运算出错。下面简单解释一下部分数组。

样本X ={ [x01 , x02 , x03 ...... x0m],

x11 , x12 , x13 ...... x1m\] , \[x21 , x22 , x23 ...... x2m\] } 注意不一定是2维数组,**每一行代表着一个样本,而每一列代表着一种类型。** 这个例子中可以看到,该样本数组中一共有3个样本,每个样本有m个特征**。** 权重W=\[w1 , w2 , w3 ...... wn

权重数组中元素数量等于于样本的特征数量,每一个特征的权重可能有所差异,需要不断迭代使其合理。

相关推荐
小鸡吃米…5 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫5 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan6 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维6 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS6 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd6 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟7 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然7 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~7 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1