题目链接: 盛最多水的容器
题目描述:
给定一个长度为 n
的整数数组 height
。有 n
条垂线,第 i
条线的两个端点是 (i, 0)
和 (i, height[i])
。
找出其中的两条线,使得它们与 x
轴共同构成的容器可以容纳最多的水。
返回容器可以储存的最大水量。
说明: 你不能倾斜容器。
示例一:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49
解释: 图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例二:
输入: height = [ 1, 1 ]
输出: 1
提示:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
算法原理:
设两个指针 left
, right
分别指向容器的左右两个端点,此时容器的容积 :
v = (right - left) * min( height[right], height[left])
容器的左边界为 height[left]
,右边界为 height[right]
。
为了方便叙述,我们假设「左边边界」小于「右边边界」。
如果此时我们固定一个边界,改变另⼀个边界,水的容积会有如下变化形式:
- 容器的宽度一定变小。
- 由于左边界较小,决定了水的高度。如果改变左边界,新的水面高度不确定,但是一定不会超过右边的柱子高度,因此容器的容积可能会增大。
- 如果改变右边界,无论右边界移动到哪里,新的水面的高度⼀定不会超过左边界,也就是不会超过现在的水面高度,但是由于容器的宽度减小,因此容器的容积⼀定会变小的。
由此可见,左边界和其余边界的组合情况都可以舍去。所以我们可以 left++
跳过这个边界,继续去判断下一个左右边界。
当我们不断重复上述过程,每次都可以舍去⼤量不必要的枚举过程,直到 left
与 right
相遇。期间产生的所有的容积里面的最大值,就是最终答案。
代码实现:
cpp
class Solution {
public:
int maxArea(vector<int>& height) {
int left = 0, right = height.size()-1,ret = 0;
while(left < right)
{
int v = min(height[left], height[right]) * (right-left);
ret = max(ret, v);
if(height[left] < height[right]) left++;
else right--;
}
return ret;
}
};