“28项评测23项SOTA——GLM-4.1V-9B-Thinking本地部署教程:10B级视觉语言模型的性能天花板!

一、模型介绍

GLM-4.1V-9B-Thinking是由智谱AI联合清华大学团队推出的多模态大模型,以GLM-4-9B-0414基座模型为底,通过引入"思维链推理机制"和"课程采样强化学习策略"(Reinforcement Learning with Curriculum Sampling),显著提升了模型的跨模态推理能力与稳定性。在继承 GLM 系列通用大模型能力的基础上,进一步强化了视觉理解和复杂推理能力。

该模型支持长上下文输入,具备处理图像、视频、文本等多种模态的能力,适用于教育、科研、工业和政务等多个领域。在28项测评任务中有23项达到10B级别模型最佳,其中18项任务持平甚至超过8倍参数量的Qwen-2.5-VL-72B。

GLM-4.1V-9B-Thinking标志着智谱GLM系列模型从感知向认知阶段的跃迁,在突破了小模型的性能极限下,也作出如下创新:

1.在深度推理领域表现卓越,支持图像、视频、文档等多模态输入。

2.作为参数模型仅为9B的模型,在部分高难度任务中,模型表现可以媲美GPT-4o。

3.模型开源,还提供了坚实的GLM-4.1V-9B-Base模型,利于研究者们的二次开放与创新。

二、模型部署

基础环境最低配置推荐

环境名称 版本信息
Ubuntu 22.04.4 LTS
Python 3.12.4
CUDA 12.6
NVIDIA Corporation RTX 4090 * 2

注:推荐pytorch 2.7.1

1.更新基础软件包、配置镜像源

查看系统版本信息

bash 复制代码
#查看系统的版本信息,包括 ID(如 ubuntu、centos 等)、版本号、名称、版本号 ID 等
cat /etc/os-release

更新软件包列表

csharp 复制代码
#更新软件列表
apt-get update

配置国内镜像源(阿里云)

具体而言,vim指令编辑文件 sources.list

bash 复制代码
#编辑源列表文件
vim  /etc/apt/sources.list

"i"进入编辑模式,将如下内容插入至 sources.list文件中

arduino 复制代码
deb http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ jammy-backports main restricted universe multiverse

最后,按 "esc"键退出编辑模式,输入 :wq 命令并按下 "enter"键便可保存并退出 sources.list文件

2.虚拟环境创建

进入pytorch官网(Get Started

找到从本地开始(Start Locally)------>PyTorch Build(Stable 2.7.1)------>Your OS(Windows)------>Packge(Pip)------>Language(Python)------>Compule Platform(CUDA 12.6)

复制所框选"命令行"后,转入至终端中粘贴执行安装

创建虚拟环境

ini 复制代码
#创建名为GLM-Thking的虚拟环境,python版本:3.12
conda create -n GLM-Thking python=3.12

激活虚拟环境

#激活

复制代码
conda activate GLM-Thking

3.克隆项目

进入文件夹GLM-4.1V-9B-Thinking

bash 复制代码
cd /root/sj-tmp/GLM-4.1V-9B-Thinking/

从github官网中克隆存储库

bash 复制代码
#克隆存储库
git clone https://github.com/THUDM/GLM-4.1V-Thinking.git

4.下载依赖

requirements.txt文件

复制代码
pip install -r requirements.txt

5.模型下载

转到魔塔社区官网下载模型文件:GLM-4.1V-9B-Thinking · 模型库

使用命令行下载完整模型库

bash 复制代码
#在下载前,请先通过如下命令安装 
pip install modelscope

#命令行下载
modelscope download --model ZhipuAI/GLM-4.1V-9B-Thinking

6.模型推理及webUI启动

模型推理代码均在 inference文件夹中

(1)执行命令行交互脚本 trans_infer_cli.py 便可进行连续对话

arduino 复制代码
python trans_infer_cli.py --model_path '/root/sj-tmp/GLM-4.1V-9B-Thinking/'

(2)执行Gradio 界面脚本 trans_infer_gradio.py便可搭建一个可以直接使用的 Web 界面

复制代码
python trans_infer_gradio.py

若遇到端口被占用的问题,可通过如下命令解决:

bash 复制代码
#查看端口号进程
lsof -i :<端口号>
#强制退出进程
kill -9 <API>

(3)web页面图像推理

(4)web页面视频推理

相关推荐
张较瘦_4 小时前
[论文阅读] AI + 软件工程 | 从“事后补救”到“实时防控”,SemGuard重塑LLM代码生成质量
论文阅读·人工智能·软件工程
IT古董4 小时前
【第五章:计算机视觉-项目实战之生成对抗网络实战】1.对抗生成网络原理-(1)对抗生成网络算法基础知识:基本思想、GAN的基本架构、应用场景、标注格式
人工智能·生成对抗网络·计算机视觉
MoRanzhi12034 小时前
0. NumPy 系列教程:科学计算与数据分析实战
人工智能·python·机器学习·数据挖掘·数据分析·numpy·概率论
金井PRATHAMA5 小时前
语义网络(Semantic Net)对人工智能中自然语言处理的深层语义分析的影响与启示
人工智能·自然语言处理·知识图谱
Gerlat小智5 小时前
【手撕机器学习 03】从“生数据”到“黄金特征”:机器学习项目中价值最高的一步
人工智能·机器学习
云澈ovo5 小时前
稀疏化神经网络:降低AI推理延迟的量化压缩技术
人工智能·深度学习·神经网络
可触的未来,发芽的智生5 小时前
新奇特:神经网络的自洁之道,学会出淤泥而不染
人工智能·python·神经网络·算法·架构
腾飞开源5 小时前
01_系统架构设计
人工智能·系统架构·情感分析·工具调用·ai智能体·意图识别·智能路由
放羊郎5 小时前
SLAM算法分类对比
人工智能·算法·分类·数据挖掘·slam·视觉·激光
浮生如梦_5 小时前
图片转视频
图像处理·人工智能·计算机视觉·音视频