亿级流量下的缓存架构设计:Redis+Caffeine多级缓存实战

亿级流量下的缓存架构设计:Redis+Caffeine多级缓存实战

一、为什么需要多级缓存?

在亿级流量场景下,单纯依赖Redis会遇到三大瓶颈:

  • 网络延迟:Redis远程访问通常需要1-5ms,QPS超过10万时成为瓶颈

  • 资源成本:高频读取导致Redis CPU飙升至80%+

  • 可用性风险:Redis集群故障时数据库直接被击穿

多级缓存架构正是破局关键:
客户端 浏览器本地缓存 CDN缓存 Nginx代理缓存 应用层Caffeine缓存 Redis分布式缓存 MySQL数据库

二、Caffeine+Redis核心架构设计

2.1 组件定位

组件 特性 适用场景
Caffeine 进程内缓存,访问速度纳秒级 高频热key(如秒杀商品)
Redis 分布式缓存,数据一致性高 全量数据缓存层

2.2 数据流转流程

java 复制代码
public Product getProduct(Long id) {
    // 1. 查询Caffeine
    Product product = caffeineCache.getIfPresent(id);
    if (product != null) {
        return product; 
    }
    
    // 2. 查询Redis(加分布式锁防击穿)
    product = redisUtil.getWithLock("product:" + id, 
             lockKey -> loadFromDB(id),  // 缓存未命中时查DB
             3, TimeUnit.SECONDS);
    
    // 3. 回填Caffeine(设置短过期时间)
    caffeineCache.put(id, product, 30, TimeUnit.SECONDS);
    return product;
}

三、关键技术实现

3.1 Caffeine高效配置

java 复制代码
Caffeine<Object, Object> caffeine = Caffeine.newBuilder()
    .maximumSize(10_000)                 // 基于容量淘汰
    .expireAfterWrite(30, TimeUnit.SECONDS) // 写后过期
    .refreshAfterWrite(5, TimeUnit.SECONDS) // 异步刷新
    .recordStats();                      // 开启监控统计

LoadingCache<Long, Product> cache = caffeine.build(id -> {
    // 异步加载函数(避免阻塞请求线程)
    return loadFromRedis(id); 
});

3.2 Redis热点Key处理

java 复制代码
// 使用Redis集群分片+本地缓存分摊压力
public Product getProduct(Long id) {
    int slot = id % 100; // 分片逻辑
    String key = "product:" + slot + ":" + id;
    
    // 先读本地缓存再读Redis...
}

3.3 缓存一致性保障

双删策略+版本号控制:

java 复制代码
// 更新数据时
public void updateProduct(Product product) {
    // 1. 更新数据库
    db.update(product);
    
    // 2. 删除Redis(失败重试3次)
    redis.deleteWithRetry("product:"+product.getId());
    
    // 3. 延迟500ms二次删除(防旧数据回填)
    scheduleTask(() -> {
        redis.delete("product:"+product.getId());
        caffeine.invalidate(product.getId());
    }, 500);
    
    // 4. 设置版本号(解决并发更新)
    redis.incr("version:"+product.getId());
}

四、性能压测对比

使用JMeter模拟100万QPS:

方案 平均响应时间 Redis CPU 数据库QPS
纯Redis 12ms 92% 1800
多级缓存 1.8ms 35% <10

性能提升点:

  • 99%的热点请求被Caffeine拦截

  • Redis负载下降60%

五、避坑指南

缓存污染问题

解决方案:Caffeine配置weakKeys+softValues

java 复制代码
.weakKeys().softValues()  // 启用弱引用+软引用

冷启动雪崩

预热方案:使用Guava的CacheLoader预加载热数据

java 复制代码
CacheLoader.asyncReloading((id) -> loadFromDB(id), executor)

监控告警体系

java 复制代码
// 通过Micrometer暴露指标
CaffeineMetrics.monitor(monitorRegistry, cache, "productCache");

监控看板需包含:

Caffeine命中率(Hit Ratio)

Redis连接池等待时间

六、扩展优化方向

热点探测:基于Redis的hotkeys命令动态识别热数据

分级存储:

  • L1:Caffeine(最新数据)

  • L2:Redis(全量数据)

  • L3:磁盘缓存(历史数据)

流量调度:根据用户IP路由到就近缓存节点

相关推荐
松涛和鸣3 分钟前
35、Linux IPC进阶:信号与System V共享内存
linux·运维·服务器·数据库·算法·list
xinyu_Jina11 分钟前
局域网文件传输:P2P应用层协议——元数据握手与数据通道的生命周期管理
数据库·asp.net·p2p
LSL666_28 分钟前
1 验证码
java·服务器·前端·redis·验证码
彬鸿科技29 分钟前
【SDR课堂第42讲】RFSOC开发入门之开发环境搭建(三)
linux·运维·数据库·ubuntu·postgresql·软件无线电·软无
九章-29 分钟前
金仓数据库助力中国石油安全环保技术研究院安全生产智能管控系统全面实现数据库国产化替代
数据库·安全
陌路2030 分钟前
redis 发布订阅功能
数据库·redis·缓存
挺6的还32 分钟前
3.Redis通用
redis
丁丁丁梦涛32 分钟前
navicat跨服务器连接MySQL数据库
服务器·数据库·mysql
tgethe36 分钟前
mysql-索引详解
数据库·mysql
一个天蝎座 白勺 程序猿37 分钟前
Apache IoTDB(11):分段聚合深度解析——从原理到实战的完整指南
数据库·apache·iotdb