Python 数据建模与分析项目实战预备 Day 4 - EDA(探索性数据分析)与可视化

✅ 今日目标

  • 使用 Pandas + Matplotlib/Seaborn 对简历数据进行探索性分析
  • 分析不同字段与目标变量的相关性
  • 通过可视化呈现简历筛选的潜在规律

🧾 一、建议分析内容

🔹 分类字段分析

字段 图表建议 说明
degree 柱状图(分组通过率) 分析学历与通过率关系
university_type 条形图 是否为双一流影响筛选?

🔹 数值字段分析

字段 图表建议 说明
work_years 箱型图 / 小提琴图 工龄 vs 通过率分布
project_count, desc_len 散点图 项目数量/质量是否有利筛选

🔹 多变量交叉分析

  • 使用 hue="pass_screening" 对比不同特征组合
  • 相关系数热力图 sns.heatmap(df.corr())

📦 所需工具

python 复制代码
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

✏️ 今日练习任务

编写 eda_visualize.py 实现以下内容:

  • 读取原始数据 resume_data.csv

  • 绘制多个字段与通过率之间的图表

  • 可输出为本地图片或显示图形窗口

    python 复制代码
    # eda_visualize.py - 简历数据可视化分析脚本
    
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    
    plt.rcParams['font.family'] = 'Arial Unicode MS'  # Mac 用户可用
    plt.rcParams['axes.unicode_minus'] = False
    
    # 设置风格
    sns.set(style="whitegrid")
    
    # 读取数据
    df = pd.read_csv("./data/resume_data.csv")
    
    # 设置字体显示中文(可选)
    plt.rcParams['font.family'] = ['Arial Unicode MS']  # macOS
    # plt.rcParams['font.sans-serif'] = ['SimHei']  # Windows
    # plt.rcParams['axes.unicode_minus'] = False
    
    # 学历 vs 通过率
    plt.figure(figsize=(6, 4))
    sns.barplot(x="degree", y="pass_screening", data=df)
    plt.title("学历 vs 简历通过率")
    plt.savefig("plot_degree_pass.png")
    
    # 学校类型 vs 通过率
    plt.figure(figsize=(6, 4))
    sns.barplot(x="university_type", y="pass_screening", data=df)
    plt.title("学校类型 vs 简历通过率")
    plt.savefig("plot_univ_pass.png")
    
    # 工龄分布对通过率影响
    plt.figure(figsize=(6, 4))
    sns.boxplot(x="pass_screening", y="work_years", data=df)
    plt.title("工龄 vs 简历通过情况")
    plt.savefig("plot_work_years_pass.png")
    
    # 项目描述长度 vs 筛选通过(散点图)
    plt.figure(figsize=(6, 4))
    sns.scatterplot(x="project_desc_len", y="project_count", hue="pass_screening", data=df)
    plt.title("项目描述长度 & 数量 vs 筛选")
    plt.savefig("plot_project_scatter.png")
    
    # 相关系数热力图
    plt.figure(figsize=(10, 6))
    corr = df.corr(numeric_only=True)
    sns.heatmap(corr, annot=True, cmap="YlGnBu")
    plt.title("字段相关系数热力图")
    plt.savefig("plot_corr_heatmap.png")
    
    print("✅ 图表已生成并保存为 PNG 文件。")





相关推荐
max5006003 分钟前
基于桥梁三维模型的无人机检测路径规划系统设计与实现
前端·javascript·python·算法·无人机·easyui
WYH28724 分钟前
C#控制台输入(Read()、ReadKey()和ReadLine())
开发语言·c#
祈祷苍天赐我java之术27 分钟前
Java 迭代器(Iterator)详解
java·开发语言
秋氘渔43 分钟前
综合案例:Python 函数知识整合 — 学生成绩管理系统
开发语言·python
我命由我123451 小时前
软件开发 - 避免过多的 if-else 语句(使用策略模式、使用映射表、使用枚举、使用函数式编程)
java·开发语言·javascript·设计模式·java-ee·策略模式·js
long3161 小时前
java 策略模式 demo
java·开发语言·后端·spring·设计模式
AI 嗯啦2 小时前
SQL详细语法教程(三)mysql的函数知识
android·开发语言·数据库·python·sql·mysql
databook2 小时前
把数学对象画出来:Manim Mobject类库速查手册
python·数学·动效
图灵学术计算机论文辅导2 小时前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
ruleslol3 小时前
python30-正则表达式
python·正则表达式