医疗数据分析中标准化的作用

在前面这个糖尿病患者聚类的例子里,标准化(StandardScaler)的作用就像给不同特征 "统一计量单位",让模型能公平地看待每个特征,避免某一个特征因为数值范围大就 "喧宾夺主"。

先看原始数据的 "不公平" 问题

例子里有 3 个特征:

  • 血糖水平:比如 120-300(单位:mg/dL)
  • 胰岛素水平:比如 4-20(单位:μU/mL)
  • BMI:比如 18-32(单位:kg/m²)

这三个特征的数值范围差异很大:

  • 血糖的范围(约 180)远大于胰岛素(约 16)和 BMI(约 14)。

如果不标准化,模型计算 "距离" 时(比如判断两个患者是否相似),血糖的影响会被放大------ 比如两个患者血糖差 50,可能比胰岛素差 5 的影响更大,但这只是因为血糖的数值范围本身更大,并不是它对 "糖尿病亚型" 的区分更重要。

标准化后:让每个特征 "权重相等"

StandardScaler 会把每个特征转换成 "均值为 0,标准差为 1" 的新数据,比如:

  • 血糖原本 150→标准化后可能是 0.2
  • 胰岛素原本 8→标准化后可能是 0.3
  • BMI 原本 28→标准化后可能是 0.1

这样一来,三个特征的数值范围变得接近(都在 - 2 到 2 之间),模型计算距离时,不会被某个特征的原始数值大小 "误导",能更公平地综合三个特征判断患者的相似性。

对 DBSCAN 聚类的具体影响

DBSCAN 的核心是通过 "密度" 判断聚类(比如 "多少个患者在某个距离内算一个亚型"):

  • 如果不标准化,因为血糖范围大,模型可能会主要根据血糖分组,忽略胰岛素和 BMI 的差异(比如把两个血糖接近但胰岛素差异大的患者分到一组)。
  • 标准化后,三个特征对 "距离" 的贡献相同,模型能更准确地识别出 "血糖、胰岛素、BMI 都相似" 的患者群体(即真正的糖尿病亚型)。

总结

标准化是为了消除特征本身 "数值大小" 的干扰,让每个特征在聚类时都能 "平等说话",这样 DBSCAN 才能更准确地找到真正相似的患者群体(亚型),而不是被某个特征的 "大数值" 带偏。

相关推荐
Coder_Boy_13 小时前
技术发展的核心规律是「加法打底,减法优化,重构平衡」
人工智能·spring boot·spring·重构
会飞的老朱15 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º16 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
Codebee19 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º19 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys19 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567819 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子19 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
智驱力人工智能20 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
qq_1601448720 小时前
亲测!2026年零基础学AI的入门干货,新手照做就能上手
人工智能