医疗数据分析中标准化的作用

在前面这个糖尿病患者聚类的例子里,标准化(StandardScaler)的作用就像给不同特征 "统一计量单位",让模型能公平地看待每个特征,避免某一个特征因为数值范围大就 "喧宾夺主"。

先看原始数据的 "不公平" 问题

例子里有 3 个特征:

  • 血糖水平:比如 120-300(单位:mg/dL)
  • 胰岛素水平:比如 4-20(单位:μU/mL)
  • BMI:比如 18-32(单位:kg/m²)

这三个特征的数值范围差异很大:

  • 血糖的范围(约 180)远大于胰岛素(约 16)和 BMI(约 14)。

如果不标准化,模型计算 "距离" 时(比如判断两个患者是否相似),血糖的影响会被放大------ 比如两个患者血糖差 50,可能比胰岛素差 5 的影响更大,但这只是因为血糖的数值范围本身更大,并不是它对 "糖尿病亚型" 的区分更重要。

标准化后:让每个特征 "权重相等"

StandardScaler 会把每个特征转换成 "均值为 0,标准差为 1" 的新数据,比如:

  • 血糖原本 150→标准化后可能是 0.2
  • 胰岛素原本 8→标准化后可能是 0.3
  • BMI 原本 28→标准化后可能是 0.1

这样一来,三个特征的数值范围变得接近(都在 - 2 到 2 之间),模型计算距离时,不会被某个特征的原始数值大小 "误导",能更公平地综合三个特征判断患者的相似性。

对 DBSCAN 聚类的具体影响

DBSCAN 的核心是通过 "密度" 判断聚类(比如 "多少个患者在某个距离内算一个亚型"):

  • 如果不标准化,因为血糖范围大,模型可能会主要根据血糖分组,忽略胰岛素和 BMI 的差异(比如把两个血糖接近但胰岛素差异大的患者分到一组)。
  • 标准化后,三个特征对 "距离" 的贡献相同,模型能更准确地识别出 "血糖、胰岛素、BMI 都相似" 的患者群体(即真正的糖尿病亚型)。

总结

标准化是为了消除特征本身 "数值大小" 的干扰,让每个特征在聚类时都能 "平等说话",这样 DBSCAN 才能更准确地找到真正相似的患者群体(亚型),而不是被某个特征的 "大数值" 带偏。

相关推荐
Apache Flink11 分钟前
Apache Flink:从实时数据分析到实时AI
大数据·人工智能·数据分析·flink·apache
code bean31 分钟前
我和 ChatGPT:一次用 AI 反观自己的技术成长之旅
人工智能·chatgpt
xiaoxiaoxiaolll1 小时前
多尺度建模新范式:当神经网络融入ABAQUS,复合材料仿真迎来“物理+数据“双引擎!
人工智能·深度学习·神经网络·学习
勤奋的小笼包5 小时前
论文阅读笔记:《Dataset Distillation by Matching Training Trajectories》
论文阅读·人工智能·笔记
max5006006 小时前
基于深度学习的污水新冠RNA测序数据分析系统
开发语言·人工智能·python·深度学习·神经网络
Sunhen_Qiletian6 小时前
计算机视觉前言-----OpenCV库介绍与计算机视觉入门准备
人工智能·opencv·计算机视觉
数字游名Tomda7 小时前
OpenAI推出开源GPT-oss-120b与GPT-oss-20b突破性大模型,支持商用与灵活部署!
人工智能·经验分享·gpt
max5006007 小时前
深度学习的视觉惯性里程计(VIO)算法优化实践
人工智能·深度学习·算法
坐在地上想成仙7 小时前
计算机视觉(3)深度学习模型部署平台技术选型与全栈实践指南
人工智能·深度学习
小王爱学人工智能9 小时前
5分钟了解OpenCV
人工智能·opencv·计算机视觉