医疗数据分析中标准化的作用

在前面这个糖尿病患者聚类的例子里,标准化(StandardScaler)的作用就像给不同特征 "统一计量单位",让模型能公平地看待每个特征,避免某一个特征因为数值范围大就 "喧宾夺主"。

先看原始数据的 "不公平" 问题

例子里有 3 个特征:

  • 血糖水平:比如 120-300(单位:mg/dL)
  • 胰岛素水平:比如 4-20(单位:μU/mL)
  • BMI:比如 18-32(单位:kg/m²)

这三个特征的数值范围差异很大:

  • 血糖的范围(约 180)远大于胰岛素(约 16)和 BMI(约 14)。

如果不标准化,模型计算 "距离" 时(比如判断两个患者是否相似),血糖的影响会被放大------ 比如两个患者血糖差 50,可能比胰岛素差 5 的影响更大,但这只是因为血糖的数值范围本身更大,并不是它对 "糖尿病亚型" 的区分更重要。

标准化后:让每个特征 "权重相等"

StandardScaler 会把每个特征转换成 "均值为 0,标准差为 1" 的新数据,比如:

  • 血糖原本 150→标准化后可能是 0.2
  • 胰岛素原本 8→标准化后可能是 0.3
  • BMI 原本 28→标准化后可能是 0.1

这样一来,三个特征的数值范围变得接近(都在 - 2 到 2 之间),模型计算距离时,不会被某个特征的原始数值大小 "误导",能更公平地综合三个特征判断患者的相似性。

对 DBSCAN 聚类的具体影响

DBSCAN 的核心是通过 "密度" 判断聚类(比如 "多少个患者在某个距离内算一个亚型"):

  • 如果不标准化,因为血糖范围大,模型可能会主要根据血糖分组,忽略胰岛素和 BMI 的差异(比如把两个血糖接近但胰岛素差异大的患者分到一组)。
  • 标准化后,三个特征对 "距离" 的贡献相同,模型能更准确地识别出 "血糖、胰岛素、BMI 都相似" 的患者群体(即真正的糖尿病亚型)。

总结

标准化是为了消除特征本身 "数值大小" 的干扰,让每个特征在聚类时都能 "平等说话",这样 DBSCAN 才能更准确地找到真正相似的患者群体(亚型),而不是被某个特征的 "大数值" 带偏。

相关推荐
云知谷4 小时前
【C++基本功】C++适合做什么,哪些领域适合哪些领域不适合?
c语言·开发语言·c++·人工智能·团队开发
rit84324995 小时前
基于MATLAB实现基于距离的离群点检测算法
人工智能·算法·matlab
初学小刘6 小时前
深度学习:从图片数据到模型训练(十分类)
人工智能·深度学习
递归不收敛6 小时前
大语言模型(LLM)入门笔记:嵌入向量与位置信息
人工智能·笔记·语言模型
之墨_7 小时前
【大语言模型】—— 自注意力机制及其变体(交叉注意力、因果注意力、多头注意力)的代码实现
人工智能·语言模型·自然语言处理
从孑开始8 小时前
ManySpeech.MoonshineAsr 使用指南
人工智能·ai·c#·.net·私有化部署·语音识别·onnx·asr·moonshine
涛涛讲AI8 小时前
一段音频多段字幕,让音频能够流畅自然对应字幕 AI生成视频,扣子生成剪映视频草稿
人工智能·音视频·语音识别
可触的未来,发芽的智生8 小时前
新奇特:黑猫警长的纳米世界,忆阻器与神经网络的智慧
javascript·人工智能·python·神经网络·架构
悟乙己8 小时前
MLops | 基于AWS Lambda 架构构建强大的机器学习(ML)血缘关系
机器学习·架构·aws
WWZZ20258 小时前
快速上手大模型:机器学习2(一元线性回归、代价函数、梯度下降法)
人工智能·算法·机器学习·计算机视觉·机器人·大模型·slam