deep learning(李宏毅)--(六)--loss

一,关于分类问题及其损失函数的一些讨论。

在构建分类模型是,我们的最后一层往往是softmax函数(起到归一化的作用),如果是二分类问题也可以用sigmoid函数。

在loss函数的选择上,一般采用交叉熵损失函数(cross-entropy),为什么呢?因为交叉熵损失函数更容易使得optimisization到达低loss(如下图:cross-entropy的梯度图更为陡)

二,对于Adam和SGDM梯度优化算法的比较

Adam:训练速度很快,但是收敛效果不佳

SGDM:训练速度平稳,收敛性较好

SWATS算法:Adam和SGDM算法的结合:(训练开始用Adam,在收敛时用SGDM)

注意:使用Adam算法初始不稳定,需要进行预加热(Warm up) .

三,Radam算法与SWATS算法比较:

后面就有点听不懂了,以后了解更多再来听吧,做个记号。
(选修)To Learn More - Optimization for Deep Learning (2_2)_哔哩哔哩_bilibili
笔记先做到这hh,有的笨,当先了解了。

相关推荐
大明者省1 小时前
《青花》歌曲,使用3D表现出意境
人工智能
一朵小红花HH2 小时前
SimpleBEV:改进的激光雷达-摄像头融合架构用于三维目标检测
论文阅读·人工智能·深度学习·目标检测·机器学习·计算机视觉·3d
Daitu_Adam2 小时前
R语言——ggmap包可视化地图
人工智能·数据分析·r语言·数据可视化
weixin_377634842 小时前
【阿里DeepResearch】写作组件WebWeaver详解
人工智能
AndrewHZ2 小时前
【AI算力系统设计分析】1000PetaOps 算力云计算系统设计方案(大模型训练推理专项版)
人工智能·深度学习·llm·云计算·模型部署·大模型推理·算力平台
AI_gurubar2 小时前
[NeurIPS‘25] AI infra / ML sys 论文(解析)合集
人工智能
胡耀超2 小时前
PaddleLabel百度飞桨Al Studio图像标注平台安装和使用指南(包冲突 using the ‘flask‘ extra、眼底医疗分割数据集演示)
人工智能·百度·开源·paddlepaddle·图像识别·图像标注·paddlelabel
聆思科技AI芯片3 小时前
【AI入门课程】2、AI 的载体 —— 智能硬件
人工智能·单片机·智能硬件
优秘智能UMI3 小时前
UMI企业智脑智能营销:多平台视频矩阵引领营销新潮流
大数据·运维·人工智能·ai·矩阵·aigc
热爱生活的猴子3 小时前
使用bert或roberta模型做分类训练时,分类数据不平衡时,可以采取哪些优化的措施
人工智能·分类·bert