一、算法分析:
由于语句执行一次的实际所需时间与机器的软硬件有关,则算法分析是针对语句执行次数,而非执行时间。
时间复杂度
计算时间复杂度:
常量阶
如果算法中的n是固定的,或者说n是常数,或者时间复杂度计算出来是一个常数( 1万,1亿都是**)**,不随n变化,则直接T(n)=O(1).

对于对数阶的情况,可以先列出最后t次的i值,因为i最终要>n才能跳出循环,则假设等于n,即可算出最终的次数t
空间复杂度
因为一般情况下空间较为充足,则一般只讨论时间复杂度
抽象数据类型ADT
二、线性表
A、线性表的定义与特点
线性表意思n个相同数据类型的数据元素的有序列表
其中的元素个数n定义为线性表的长度,当n=0时,称之为空表,对于非空的线性表或线性结构,特点:
存在唯一的"第一个"与"最后一个"的数据元素
除第一个元素外,结构中的每个数据元素均只有一个前驱
除最后一个外,结构中的每个数据均只有一个后继
B、线性表的顺序表示与实现
1、顺序表的初始化:


cpp
#include <stdio.h>
#define MAXSIZE 100
typedef int ElemType;
//顺序表定义
typedef struct{
ElemType data[MAXSIZE];
int length;
}SeqList;
//顺序表初始化
void initList(SeqList *L)
{
L->length = 0;
}
int main(int argc, char const *argv[])
{
//声明一个顺序表并初始化
SeqList list;
initList(&list);
printf("初始化成功,目前长度占用%d\n",list.length);
printf("目前占用内存%zu字节\n", sizeof(list.data));
return 0;
}
2、顺序表的尾部添加元素:

cpp
#include <stdio.h>
#define MAXSIZE 100
typedef int ElemType;
//顺序表定义
typedef struct{
ElemType data[MAXSIZE];
int length;
}SeqList;
//顺序表初始化
void initList(SeqList *L)
{
L->length = 0;
}
//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{
if (L->length>=MAXSIZE)
{
printf("顺序表已满\n");
return 0;
}
L->data[L->length] = e;
L->length++;
return 1;
}
int main(int argc, char const *argv[])
{
//声明一个线性表并初始化
SeqList list;
initList(&list);
printf("初始化成功,目前长度占用%d\n",list.length);
printf("目前占用内存%zu字节\n", sizeof(list.data));
appendElem(&list, 88);
return 0;
}
3、顺序表的遍历:

cpp
#include <stdio.h>
#define MAXSIZE 100
typedef int ElemType;
//顺序表定义
typedef struct{
ElemType data[MAXSIZE];
int length;
}SeqList;
//顺序表初始化
void initList(SeqList *L)
{
L->length = 0;
}
//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{
if (L->length>=MAXSIZE)
{
printf("顺序表已满\n");
return 0;
}
L->data[L->length] = e;
L->length++;
return 1;
}
//遍历
void listElem(SeqList *L)
{
for (int i = 0; i < L->length; i++)
{
printf("%d ", L->data[i]);
}
printf("\n");
}
int main(int argc, char const *argv[])
{
//声明一个线性表并初始化
SeqList list;
initList(&list);
printf("初始化成功,目前长度占用%d\n",list.length);
printf("目前占用内存%zu字节\n", sizeof(list.data));
appendElem(&list, 88);
appendElem(&list, 45);
appendElem(&list, 43);
appendElem(&list, 17);
listElem(&list);
return 0;
}
将顺序表的全部值,从头到尾打印一遍
4、循环表的插入元素:

cpp
#include <stdio.h>
#define MAXSIZE 100
typedef int ElemType;
//顺序表定义
typedef struct{
ElemType data[MAXSIZE];
int length;
}SeqList;
//顺序表初始化
void initList(SeqList *L)
{
L->length = 0;
}
//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{
if (L->length>=MAXSIZE)
{
printf("顺序表已满\n");
return 0;
}
L->data[L->length] = e;
L->length++;
return 1;
}
//遍历
void listElem(SeqList *L)
{
for (int i = 0; i < L->length; i++)
{
printf("%d ", L->data[i]);
}
printf("\n");
}
//插入数据
int insertElem(SeqList *L, int pos, ElemType e)
{
if(L->length >= MAXSIZE)
{
printf("表已经满了\n");
return 0;
}
if (pos < 1 || pos > L->length)
{
printf("插入位置错误\n");
return 0;
}
if (pos <= L->length)
{
for (int i = L->length-1; i >= pos-1; i--)
{
L->data[i+1] = L->data[i];
}
L->data[pos-1] = e;
L->length++;
}
return 1;
}
int main(int argc, char const *argv[])
{
//声明一个线性表并初始化
SeqList list;
initList(&list);
printf("初始化成功,目前长度占用%d\n",list.length);
printf("目前占用内存%zu字节\n", sizeof(list.data));
appendElem(&list, 88);
appendElem(&list, 67);
appendElem(&list, 40);
appendElem(&list, 8);
appendElem(&list, 23);
listElem(&list);
insertElem(&list, 2, 18);
listElem(&list);
return 0;
}
5、对表与插入位置进行检测

6、表中的删除元素:

对于删除的数的定义与传值,利用指针
利用指针意思是通过形参来改变实参,因为这样可以对函数外的值进行改变

对于表的情况检测:

cpp
#include <stdio.h>
#define MAXSIZE 100
typedef int ElemType;
//顺序表定义
typedef struct{
ElemType data[MAXSIZE];
int length;
}SeqList;
//顺序表初始化
void initList(SeqList *L)
{
L->length = 0;
}
//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{
if (L->length>=MAXSIZE)
{
printf("顺序表已满\n");
return 0;
}
L->data[L->length] = e;
L->length++;
return 1;
}
//遍历
void listElem(SeqList *L)
{
for (int i = 0; i < L->length; i++)
{
printf("%d ", L->data[i]);
}
printf("\n");
}
//插入数据
int insertElem(SeqList *L, int pos, ElemType e)
{
if(L->length >= MAXSIZE)
{
printf("表已经满了\n");
return 0;
}
if (pos < 1 || pos > L->length)
{
printf("插入位置错误\n");
return 0;
}
if (pos <= L->length)
{
for (int i = L->length-1; i >= pos-1; i--)
{
L->data[i+1] = L->data[i];
}
L->data[pos-1] = e;
L->length++;
}
return 1;
}
//删除数据
int deleteElem(SeqList *L, int pos, ElemType *e)
{
if(L->length == 0)
{
printf("空表\n");
return 0;
}
if (pos < 1 || pos > L->length)
{
printf("删除数据位置有误\n");
return 0;
}
*e = L->data[pos-1];
if (pos < L->length)
{
for (int i = pos; i < L->length; i++)
{
L->data[i-1] = L->data[i];
}
}
L->length--;
return 1;
}
int main(int argc, char const *argv[])
{
//声明一个线性表并初始化
SeqList list;
initList(&list);
printf("初始化成功,目前长度占用%d\n",list.length);
printf("目前占用内存%zu字节\n", sizeof(list.data));
appendElem(&list, 88);
appendElem(&list, 67);
appendElem(&list, 40);
appendElem(&list, 8);
appendElem(&list, 23);
listElem(&list);
insertElem(&list, 1, 18);
listElem(&list);
ElemType delData;
deleteElem(&list, 2, &delData);
printf("被删除的数据为:%d\n", delData);
listElem(&list);
return 0;
}
7、表的查找:

(对于动态分配:使用malloc函数来对于堆中开辟空间,创造一个数据)
使用注意事项: 1、需要包含标准库头文件\
2、一般返回viod\* 通用数据类型指针,则使用时需要进行数据强转换,可结构体或int之类 3、函数会分配指定字节数的内存空间,并且返回一个指向这块内存起始位置的void\*指针。要是内存分配失败,就会返回NULL。 ```cpp #include #include int main() { int* ptr; // 分配4个int大小的内存空间 ptr = (int*)malloc(4 * sizeof(int)); //int型强转, if (ptr == NULL) { printf("内存分配失败\n"); return 1; } // 使用分配的内存 for (int i = 0; i < 4; i++) { ptr[i] = i * 10; } for (int i = 0; i < 4; i++) { printf("ptr[%d] = %d\n", i, ptr[i]); } // 释放内存 free(ptr); return 0; } ``` 4、在使用malloc时,一定要使用sizeof操作符来计算所需内存的大小。就像前面的例子,sizeof(int)能根据不同的系统环境确定一个整数所占的字节数。(利于代码移植) 申请的空间是: 指针 指向的那块内存申请的空间 5、通过malloc分配的内存,在使用完毕后必须调用free()函数进行释放,以避免出现内存泄漏的问题。 6、malloc分配的内存中可能包含之前残留的数据,也就是这些内存不会被自动初始化。如果需要初始化为 0,可以使用calloc函数。
8、表的动态分配地址初始化:

对于此时L所接收的是地址,返回的也是,则对于之前的函数是直接在栈区进行创建数据,使用时对地址进行操作需要使用&(取地址符),现在直接返回地址,则可直接对返回的值进行操作:

cpp
#include <stdio.h>
#include <stdlib.h>
#define MAXSIZE 100
typedef int ElemType;
//顺序表定义
typedef struct{
ElemType *data;
int length;
}SeqList;
//顺序表初始化-动态分配内存
SeqList* initList()
{
SeqList *L = (SeqList*)malloc(sizeof(SeqList));
L->data = (ElemType*)malloc(sizeof(ElemType) * MAXSIZE);
L->length = 0;
return L;
}
//尾部添加元素
int appendElem(SeqList *L, ElemType e)
{
if (L->length>=MAXSIZE)
{
printf("顺序表已满\n");
return 0;
}
L->data[L->length] = e;
L->length++;
return 1;
}
//遍历
void listElem(SeqList *L)
{
for (int i = 0; i < L->length; i++)
{
printf("%d ", L->data[i]);
}
printf("\n");
}
//插入数据
int insertElem(SeqList *L, int pos, ElemType e)
{
if(L->length >= MAXSIZE)
{
printf("表已经满了\n");
return 0;
}
if (pos < 1 || pos > L->length)
{
printf("插入位置错误\n");
return 0;
}
if (pos <= L->length)
{
for (int i = L->length-1; i >= pos-1; i--)
{
L->data[i+1] = L->data[i];
}
L->data[pos-1] = e;
L->length++;
}
return 1;
}
//删除数据
int deleteElem(SeqList *L, int pos, ElemType *e)
{
if(L->length == 0)
{
printf("空表\n");
return 0;
}
if (pos < 1 || pos > L->length)
{
printf("删除数据位置有误\n");
return 0;
}
*e = L->data[pos-1];
if (pos < L->length)
{
for (int i = pos; i < L->length; i++)
{
L->data[i-1] = L->data[i];
}
}
L->length--;
return 1;
}
//查找数据位置
int findElem(SeqList *L, ElemType e)
{
if (L->length == 0)
{
printf("空列表\n");
return 0;
}
for (int i = 0; i < L->length; i++)
{
if(L->data[i] == e)
{
return i + 1;
}
}
return 0;
}
int main(int argc, char const *argv[])
{
//声明一个线性表并初始化
SeqList *list = initList();
printf("初始化成功,目前长度占用%d\n",list->length);
printf("目前占用内存%zu字节\n", sizeof(list->data));
appendElem(list, 88);
appendElem(list, 67);
appendElem(list, 40);
appendElem(list, 8);
appendElem(list, 23);
listElem(list);
insertElem(list, 1, 18);
listElem(list);
ElemType delData;
deleteElem(list, 2, &delData);
printf("被删除的数据为:%d\n", delData);
listElem(list);
printf("%d\n", findElem(list, 40));
return 0;
}
C、线性表的链式表达与实现
1、定义:
它是一种物理存储单元上非连续、非顺序的存储结构 ,数据元素的逻辑顺序通过链表中的指针链接次序实现。由一系列结点组成,结点可在运行时动态生成。
2、结点:
每个结点包含两部分,一是存储数据元素的数据域 ,用于存放具体数据;二是存储下一个结点地址的指针域 (最后一个指针域为NULL)(在双向链表中还有指向前驱结点的指针域 ),通过指针将各个结点连接起来,形成链表结构。
3、单链表-存储结构:
cpp
使用结构体来编写节点。
typedef int ElemType;
typedef struct node
{
ElemType data;//数据域
struct node *next;//指针域
}Node; //别名
4、单链表-初始化:
cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
return 0;
}
5、单链表-头插法
头插法-插入节点,创建新结点并且将指针域值变换
为什么是头插法,因为传入的一直是第一个结点

cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
insertHead(list, 10);
insertHead(list, 20);
return 0;
}
6、单链表-遍历

cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
int main(int argc, char const *argv[])
{
Node *list = initList();
insertHead(list, 10);
insertHead(list, 20);
insertHead(list, 30);
listNode(list);
return 0;
}
7、单链表-尾插法
尾插法就是在末尾插入结点
但尾插法需要先知道尾部值的地址,则需要通过遍历找到最后结点指针域是NULL的
cppNode* get_tail(Node *L) { Node *p=L; while( p -> next != NULL) { p = p -> next ; } return p; }
然后再返回新的尾结点
cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 10);
tail = insertTail(tail, 20);
tail = insertTail(tail, 30);
listNode(list);
return 0;
}
8、单链表-在指定位置插入数据
cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
//用来保存插入位置的前驱节点
Node *p = L;
int i = 0;
//遍历链表找到插入位置的前驱节点
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
//要插入的新节点
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 10);
tail = insertTail(tail, 20);
tail = insertTail(tail, 30);
listNode(list);
insertNode(list, 2, 15);
listNode(list);
return 0;
}
9、单链表-删除节点


cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
//要删除节点的前驱
Node *p = L;
int i = 0;
//遍历链表,找到要删除节点的前驱。
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
//q指向要删除的节点
Node *q = p->next;
//让要删除节点的前驱指向要删除节点的后继
p->next = q->next;
//释放要删除节点的内存空间
free(q);
return 1;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 10);
tail = insertTail(tail, 20);
tail = insertTail(tail, 30);
listNode(list);
insertNode(list, 2, 15);
listNode(list);
deleteNode(list, 2);
listNode(list);
return 0;
}
注意删除节点,一定要释放所删除节点的空间(因为是在堆区中创建的)
10、单链表-获取链表长度

cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 10);
tail = insertTail(tail, 20);
tail = insertTail(tail, 30);
listNode(list);
insertNode(list, 2, 15);
listNode(list);
deleteNode(list, 2);
listNode(list);
printf("%d\n", listLength(list));
return 0;
}
和遍历相似
11、单链表-释放链表
释放链表:释放除头结点之后的所有节点

cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 10);
tail = insertTail(tail, 20);
tail = insertTail(tail, 30);
listNode(list);
insertNode(list, 2, 15);
listNode(list);
deleteNode(list, 2);
listNode(list);
printf("%d\n", listLength(list));
freeList(list);
printf("%d\n", listLength(list));
return 0;
}
D、线性表的应用
1、单链表--现只给出了头指针,在不改变链表的情况下查找到其中的倒数第K个位置上的data域的值

cpp
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{
Node *fast = L->next;
Node *slow = L->next;
for (int i = 0; i < k; i++)
{
fast = fast->next;
}
while(fast != NULL)
{
fast = fast->next;
slow = slow->next;
}
printf("倒数第%d个节点值为:%d\n", k, slow->data);
return 1;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 10);
tail = insertTail(tail, 20);
tail = insertTail(tail, 30);
tail = insertTail(tail, 40);
tail = insertTail(tail, 50);
tail = insertTail(tail, 60);
tail = insertTail(tail, 70);
listNode(list);
findNodeFS(list, 3);
return 0;
}
2、单链表--对于两个不同长度链表,其末尾是相同的几个结点,要找到最开始相同的结点的指针域
获取两个链表长度进行相减得到步差,这时就也可以使用快慢指针从两个链表中进行寻找,同时走到同一个地址时,则该的结点为要求节点
3、单链表--删除绝对值相同的节点


cpp
#include <stdio.h>
#include <stdlib.h>
typedef char ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{
Node *node = (Node*)malloc(sizeof(Node));
node->data = e;
node->next = NULL;
return node;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%c ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{
tail->next = node;
node->next = NULL;
return node;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{
Node *fast = L->next;
Node *slow = L->next;
for (int i = 0; i < k; i++)
{
fast = fast->next;
}
while(fast != NULL)
{
fast = fast->next;
slow = slow->next;
}
printf("倒数第%d个节点值为:%d\n", k, slow->data);
return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{
if(headA == NULL || headB == NULL)
{
return NULL;
}
Node *p = headA;
int lenA = 0;
int lenB = 0;
//遍历链表A,获取链表A的长度
while(p != NULL)
{
p = p->next;
lenA++;
}
//遍历链表B,获取链表B的长度
p = headB;
while(p != NULL)
{
p = p->next;
lenB++;
}
Node *m;//快指针
Node *n;//慢指针
int step;//两个单词之间数量的差值,可以用于快指针先走的步数
if (lenA > lenB)
{
step = lenA - lenB;
m = headA;
n = headB;
}
else
{
step = lenB - lenA;
m = headB;
n = headA;
}
//让快指针先走step步
for (int i = 0; i < step; i++)
{
m = m->next;
}
//快慢指针同步走,直到指向同一个节点退出循环
while(m != n)
{
m = m->next;
n = n->next;
}
return m;
}
int main(int argc, char const *argv[])
{
Node *listA = initList();
Node *listB = initList();
Node *tailA = get_tail(listA);
Node *tailB = get_tail(listB);
tailA = insertTail(tailA, 'l');
tailA = insertTail(tailA, 'o');
tailA = insertTail(tailA, 'a');
tailA = insertTail(tailA, 'd');
tailB = insertTail(tailB, 'b');
tailB = insertTail(tailB, 'e');
Node *nodeI = initListWithElem('i');
tailA = insertTailWithNode(tailA, nodeI);
tailB = insertTailWithNode(tailB, nodeI);
Node *nodeN = initListWithElem('n');
tailA = insertTailWithNode(tailA, nodeN);
tailB = insertTailWithNode(tailB, nodeN);
Node *nodeG = initListWithElem('g');
tailA = insertTailWithNode(tailA, nodeG);
tailB = insertTailWithNode(tailB, nodeG);
listNode(listA);
listNode(listB);
printf("%c\n",findIntersectionNode(listA,listB)->data);
return 0;
}
该代码思路就是通过数来控制数组下标,再通过该数组下标对应的数进行判断是否有重复的,可以进行除重使用
注:
对于为什么使用指针接收或初始化数组,因为在堆区中申请空间使用malloc函数,其的使用方法是:
(void*)malloc(申请的空间大小),其返回的也是指针型的空间地址。
所以应该使用指针去接收
并且为了防止在之前的堆区数据未释放干净,使申请堆区内存时,申请失败
则可以在申请后进行一次判断
if (p == NULL) { printf("内存分配失败\n"); return; }
4、单链表--反转链表


进行编写的图示经过



#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{
Node *node = (Node*)malloc(sizeof(Node));
node->data = e;
node->next = NULL;
return node;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{
tail->next = node;
node->next = NULL;
return node;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{
Node *fast = L->next;
Node *slow = L->next;
for (int i = 0; i < k; i++)
{
fast = fast->next;
}
while(fast != NULL)
{
fast = fast->next;
slow = slow->next;
}
printf("倒数第%d个节点值为:%d\n", k, slow->data);
return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{
if(headA == NULL || headB == NULL)
{
return NULL;
}
Node *p = headA;
int lenA = 0;
int lenB = 0;
while(p != NULL)
{
p = p->next;
lenA++;
}
p = headB;
while(p != NULL)
{
p = p->next;
lenB++;
}
Node *m;
Node *n;
int step;
if (lenA > lenB)
{
step = lenA - lenB;
m = headA;
n = headB;
}
else
{
step = lenB - lenA;
m = headB;
n = headA;
}
for (int i = 0; i < step; i++)
{
m = m->next;
}
while(m != n)
{
m = m->next;
n = n->next;
}
return m;
}
//删除绝对值相同的节点
void removeNode(Node *L, int n)
{
Node *p = L;
int index;
int *q = (int*)malloc(sizeof(int)*(n+1));
for (int i = 0; i < n+1; i++)
{
*(q + i) = 0;
}
while(p->next != NULL)
{
index = abs(p->next->data);
if(*(q+index) == 0)
{
*(q + index) = 1;
p = p->next;
}
else
{
Node *temp = p->next;
p->next = temp->next;
free(temp);
}
}
free(q);
}
//反转链表
Node* reverseList(Node* head)
{
Node *first = NULL;
Node *second = head->next;
Node *third;
while(second != NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *hd = initList();
hd->next = first;
return hd;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 1);
tail = insertTail(tail, 2);
tail = insertTail(tail, 3);
tail = insertTail(tail, 4);
tail = insertTail(tail, 5);
tail = insertTail(tail, 6);
listNode(list);
Node* reverse = reverseList(list);
listNode(reverse);
return 0;
}
5、单链表--删除中间节点
主要是利用快慢指针来进行寻找中间位置
针对奇数链表

#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{
Node *node = (Node*)malloc(sizeof(Node));
node->data = e;
node->next = NULL;
return node;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{
tail->next = node;
node->next = NULL;
return node;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{
Node *fast = L->next;
Node *slow = L->next;
for (int i = 0; i < k; i++)
{
fast = fast->next;
}
while(fast != NULL)
{
fast = fast->next;
slow = slow->next;
}
printf("倒数第%d个节点值为:%d\n", k, slow->data);
return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{
if(headA == NULL || headB == NULL)
{
return NULL;
}
Node *p = headA;
int lenA = 0;
int lenB = 0;
while(p != NULL)
{
p = p->next;
lenA++;
}
p = headB;
while(p != NULL)
{
p = p->next;
lenB++;
}
Node *m;
Node *n;
int step;
if (lenA > lenB)
{
step = lenA - lenB;
m = headA;
n = headB;
}
else
{
step = lenB - lenA;
m = headB;
n = headA;
}
for (int i = 0; i < step; i++)
{
m = m->next;
}
while(m != n)
{
m = m->next;
n = n->next;
}
return m;
}
//删除绝对值相同的节点
void removeNode(Node *L, int n)
{
Node *p = L;
int index;
int *q = (int*)malloc(sizeof(int)*(n+1));
for (int i = 0; i < n+1; i++)
{
*(q + i) = 0;
}
while(p->next != NULL)
{
index = abs(p->next->data);
if(*(q+index) == 0)
{
*(q + index) = 1;
p = p->next;
}
else
{
Node *temp = p->next;
p->next = temp->next;
free(temp);
}
}
free(q);
}
//反转链表
Node* reverseList(Node* head)
{
Node *first = NULL;
Node *second = head->next;
Node *third;
while(second != NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *hd = initList();
hd->next = first;
return hd;
}
//删除中间节点
int delMiddleNode(Node *head)
{
Node *fast = head->next;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
Node *q = slow->next;
slow->next = q->next;
free(q);
return 1;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 1);
tail = insertTail(tail, 2);
tail = insertTail(tail, 3);
tail = insertTail(tail, 4);
tail = insertTail(tail, 5);
tail = insertTail(tail, 6);
tail = insertTail(tail, 7);
listNode(list);
delMiddleNode(list);
listNode(list);
return 0;
}
6、单链表--将链表:a,a1,a2.....an-2,an-1,an 变为a,an,a1,an-1,a2,an-2......
设计思路为:先找到中间的位置将其断开,然后将后半部分反转,再进行插空链接

成为这样纸



#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{
Node *node = (Node*)malloc(sizeof(Node));
node->data = e;
node->next = NULL;
return node;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{
tail->next = node;
node->next = NULL;
return node;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{
Node *fast = L->next;
Node *slow = L->next;
for (int i = 0; i < k; i++)
{
fast = fast->next;
}
while(fast != NULL)
{
fast = fast->next;
slow = slow->next;
}
printf("倒数第%d个节点值为:%d\n", k, slow->data);
return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{
if(headA == NULL || headB == NULL)
{
return NULL;
}
Node *p = headA;
int lenA = 0;
int lenB = 0;
while(p != NULL)
{
p = p->next;
lenA++;
}
p = headB;
while(p != NULL)
{
p = p->next;
lenB++;
}
Node *m;
Node *n;
int step;
if (lenA > lenB)
{
step = lenA - lenB;
m = headA;
n = headB;
}
else
{
step = lenB - lenA;
m = headB;
n = headA;
}
for (int i = 0; i < step; i++)
{
m = m->next;
}
while(m != n)
{
m = m->next;
n = n->next;
}
return m;
}
//删除绝对值相同的节点
void removeNode(Node *L, int n)
{
Node *p = L;
int index;
int *q = (int*)malloc(sizeof(int)*(n+1));
for (int i = 0; i < n+1; i++)
{
*(q + i) = 0;
}
while(p->next != NULL)
{
index = abs(p->next->data);
if(*(q+index) == 0)
{
*(q + index) = 1;
p = p->next;
}
else
{
Node *temp = p->next;
p->next = temp->next;
free(temp);
}
}
free(q);
}
//反转链表
Node* reverseList(Node* head)
{
Node *first = NULL;
Node *second = head->next;
Node *third;
while(second != NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *hd = initList();
hd->next = first;
return hd;
}
//删除中间节点
int delMiddleNode(Node *head)
{
Node *fast = head->next;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
Node *q = slow->next;
slow->next = q->next;
free(q);
return 1;
}
//链表重新排序
void reOrderList(Node *head)
{
Node *fast = head->next;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
Node *first = NULL;
Node *second = slow->next;
slow->next = NULL;
Node *third = NULL;
while(second != NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *p1 = head->next;
Node *q1 = first;
Node *p2, *q2;
while(p1 != NULL && q1 != NULL)
{
p2 = p1->next;
q2 = q1->next;
p1->next = q1;
q1->next = p2;
p1 = p2;
q1 = q2;
}
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 1);
tail = insertTail(tail, 2);
tail = insertTail(tail, 3);
tail = insertTail(tail, 4);
tail = insertTail(tail, 5);
tail = insertTail(tail, 6);
listNode(list);
reOrderList(list);
listNode(list);
return 0;
}
7、单链表--判断链表是否有环

就是利用快慢指针来看是否能追到,因为快慢,所以只要有环不论多少次都会追到,则可运用其来进行判断。
#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{
Node *node = (Node*)malloc(sizeof(Node));
node->data = e;
node->next = NULL;
return node;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{
tail->next = node;
node->next = NULL;
return node;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{
Node *fast = L->next;
Node *slow = L->next;
for (int i = 0; i < k; i++)
{
fast = fast->next;
}
while(fast != NULL)
{
fast = fast->next;
slow = slow->next;
}
printf("倒数第%d个节点值为:%d\n", k, slow->data);
return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{
if(headA == NULL || headB == NULL)
{
return NULL;
}
Node *p = headA;
int lenA = 0;
int lenB = 0;
while(p != NULL)
{
p = p->next;
lenA++;
}
p = headB;
while(p != NULL)
{
p = p->next;
lenB++;
}
Node *m;
Node *n;
int step;
if (lenA > lenB)
{
step = lenA - lenB;
m = headA;
n = headB;
}
else
{
step = lenB - lenA;
m = headB;
n = headA;
}
for (int i = 0; i < step; i++)
{
m = m->next;
}
while(m != n)
{
m = m->next;
n = n->next;
}
return m;
}
//删除绝对值相同的节点
void removeNode(Node *L, int n)
{
Node *p = L;
int index;
int *q = (int*)malloc(sizeof(int)*(n+1));
for (int i = 0; i < n+1; i++)
{
*(q + i) = 0;
}
while(p->next != NULL)
{
index = abs(p->next->data);
if(*(q+index) == 0)
{
*(q + index) = 1;
p = p->next;
}
else
{
Node *temp = p->next;
p->next = temp->next;
free(temp);
}
}
free(q);
}
//反转链表
Node* reverseList(Node* head)
{
Node *first = NULL;
Node *second = head->next;
Node *third;
while(second != NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *hd = initList();
hd->next = first;
return hd;
}
//删除中间节点
int delMiddleNode(Node *head)
{
Node *fast = head->next;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
Node *q = slow->next;
slow->next = q->next;
free(q);
return 1;
}
//链表重新排序
void reOrderList(Node *head)
{
Node *fast = head;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
Node *first = NULL;
Node *second = slow->next;
slow->next = NULL;
Node *third = NULL;
while(second !=NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *p1 = head->next;
Node *q1 = first;
Node *p2, *q2;
while(p1 != NULL && q1 != NULL)
{
p2 = p1->next;
q2 = q1->next;
p1->next = q1;
q1->next = p2;
p1 = p2;
q1 = q2;
}
}
//判断链表是否有环
int isCycle(Node *head)
{
Node *fast = head;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
if (fast == slow)
{
return 1;
}
}
return 0;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 1);
tail = insertTail(tail, 2);
tail = insertTail(tail, 3);
Node *three = tail;
tail = insertTail(tail, 4);
tail = insertTail(tail, 5);
tail = insertTail(tail, 6);
tail = insertTail(tail, 7);
tail = insertTail(tail, 8);
tail->next = three;
//listNode(list);
if (isCycle(list))
{
printf("有环\n");
}
else
{
printf("无环\n");
}
return 0;
}
8、单链表--判断链表有环的入口在哪
也可运用快慢指针,当第一次相遇后,让一个停止,另一个继续走,这时记录他们所走的次数,则可知道这个环中有几个节点,再让其快慢指针重新走,并让快指针先走这几步,再同步走,当相遇时,此节点则为入口节点



#include <stdio.h>
#include <stdlib.h>
typedef int ElemType;
typedef struct node{
ElemType data;
struct node *next;
}Node;
//初化链表
Node* initList()
{
Node *head = (Node*)malloc(sizeof(Node));
head->data = 0;
head->next = NULL;
return head;
}
//初始化节点(带节点数据域参数)
Node* initListWithElem(ElemType e)
{
Node *node = (Node*)malloc(sizeof(Node));
node->data = e;
node->next = NULL;
return node;
}
//头插法
int insertHead(Node* L, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
p->next = L->next;
L->next = p;
return 1;
}
//遍历
void listNode(Node* L)
{
Node *p = L->next;
while(p != NULL)
{
printf("%d ", p->data);
p = p->next;
}
printf("\n");
}
//获取尾部结点
Node* get_tail(Node *L)
{
Node *p = L;
while(p->next != NULL)
{
p = p->next;
}
return p;
}
//尾插法
Node* insertTail(Node *tail, ElemType e)
{
Node *p = (Node*)malloc(sizeof(Node));
p->data = e;
tail->next = p;
p->next = NULL;
return p;
}
//尾插法(节点)
Node* insertTailWithNode(Node *tail, Node *node)
{
tail->next = node;
node->next = NULL;
return node;
}
//指定位置插入
int insertNode(Node *L, int pos, ElemType e)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
Node *q = (Node*)malloc(sizeof(Node));
q->data = e;
q->next = p->next;
p->next = q;
return 1;
}
//删除节点
int deleteNode(Node *L, int pos)
{
Node *p = L;
int i = 0;
while(i < pos-1)
{
p = p->next;
i++;
if (p == NULL)
{
return 0;
}
}
if(p->next == NULL)
{
printf("要删除的位置错误\n");
return 0;
}
Node *q = p->next;
p->next = q->next;
free(q);
return 1;
}
//获取链表长度
int listLength(Node *L)
{
Node *p = L;
int len = 0;
while(p != NULL)
{
p = p->next;
len++;
}
return len;
}
//释放链表
void freeList(Node *L)
{
Node *p = L->next;
Node *q;
while(p != NULL)
{
q = p->next;
free(p);
p = q;
}
L->next = NULL;
}
//查找倒数第k个节点
int findNodeFS(Node *L, int k)
{
Node *fast = L->next;
Node *slow = L->next;
for (int i = 0; i < k; i++)
{
fast = fast->next;
}
while(fast != NULL)
{
fast = fast->next;
slow = slow->next;
}
printf("倒数第%d个节点值为:%d\n", k, slow->data);
return 1;
}
//查找两个节点共同后缀的起始位置
Node* findIntersectionNode(Node *headA, Node *headB)
{
if(headA == NULL || headB == NULL)
{
return NULL;
}
Node *p = headA;
int lenA = 0;
int lenB = 0;
while(p != NULL)
{
p = p->next;
lenA++;
}
p = headB;
while(p != NULL)
{
p = p->next;
lenB++;
}
Node *m;
Node *n;
int step;
if (lenA > lenB)
{
step = lenA - lenB;
m = headA;
n = headB;
}
else
{
step = lenB - lenA;
m = headB;
n = headA;
}
for (int i = 0; i < step; i++)
{
m = m->next;
}
while(m != n)
{
m = m->next;
n = n->next;
}
return m;
}
//删除绝对值相同的节点
void removeNode(Node *L, int n)
{
Node *p = L;
int index;
int *q = (int*)malloc(sizeof(int)*(n+1));
for (int i = 0; i < n+1; i++)
{
*(q + i) = 0;
}
while(p->next != NULL)
{
index = abs(p->next->data);
if(*(q+index) == 0)
{
*(q + index) = 1;
p = p->next;
}
else
{
Node *temp = p->next;
p->next = temp->next;
free(temp);
}
}
free(q);
}
//反转链表
Node* reverseList(Node* head)
{
Node *first = NULL;
Node *second = head->next;
Node *third;
while(second != NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *hd = initList();
hd->next = first;
return hd;
}
//删除中间节点
int delMiddleNode(Node *head)
{
Node *fast = head->next;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
Node *q = slow->next;
slow->next = q->next;
free(q);
return 1;
}
//链表重新排序
void reOrderList(Node *head)
{
Node *fast = head;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
}
Node *first = NULL;
Node *second = slow->next;
slow->next = NULL;
Node *third = NULL;
while(second !=NULL)
{
third = second->next;
second->next = first;
first = second;
second = third;
}
Node *p1 = head->next;
Node *q1 = first;
Node *p2, *q2;
while(p1 != NULL && q1 != NULL)
{
p2 = p1->next;
q2 = q1->next;
p1->next = q1;
q1->next = p2;
p1 = p2;
q1 = q2;
}
}
//判断链表是否有环
int isCycle(Node *head)
{
Node *fast = head;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
if (fast == slow)
{
return 1;
}
}
return 0;
}
//找到链表环的入口
Node* findBegin(Node *head)
{
Node *fast = head;
Node *slow = head;
while(fast != NULL && fast->next != NULL)
{
fast = fast->next->next;
slow = slow->next;
if (fast == slow)
{
Node *p = fast;
int count = 1;
while(p->next != slow)
{
count++;
p = p->next;
}
fast = head;
slow = head;
for (int i = 0; i < count; i++)
{
fast = fast->next;
}
while(fast != slow)
{
fast = fast->next;
slow = slow->next;
}
return slow;
}
}
return NULL;
}
int main(int argc, char const *argv[])
{
Node *list = initList();
Node *tail = get_tail(list);
tail = insertTail(tail, 1);
tail = insertTail(tail, 2);
tail = insertTail(tail, 3);
Node *three = tail;
tail = insertTail(tail, 4);
tail = insertTail(tail, 5);
tail = insertTail(tail, 6);
tail = insertTail(tail, 7);
tail = insertTail(tail, 8);
tail->next = three;
Node *p = findBegin(list);
printf("%d\n", p->data);
return 0;
}
E、双向链表
1、双向链表--初始化
比单链表多了一个指向前驱的指针

2、双向链表--头插法

变为


3、双向链表--尾插法
与单链表相同需要通过遍历找到最后结点指针域是NULL的
Node* get_tail(Node *L)
{
Node *p=L;
while( p -> next != NULL)
{
p = p -> next ;
}
return p;
}
再进行尾插法

4、双向链表--在指定位置插入数据
首先先找到所插入位置的前一个节点(利用遍历)

再进行插入:

5、双向链表--删除节点
相同先通过遍历找到所删除节点的前驱位置,再进行操作

删除节点为将该节点前驱和后继进行相连,并将本节点申请的空间进行释放

F、顺序表与链表的对比

结语
学习于B站的 逊哥带你学计算机 up主 的 《数据结构(C 语言描述)》也许是全站最良心最通俗易懂最好看的数据结构课(最迟每周五更新~~)
还在学习中,如有错误还请大佬们指出,有问题可相互交流
《数据结构(C 语言描述)》也许是全站最良心最通俗易懂最好看的数据结构课(最迟每周五更新~~)_哔哩哔哩_bilibili