Python学习之路(十三)-常用函数的使用,及优化

Python 语言中有一些常用的函数,它们在日常编程中非常实用

文章目录


1. map() 函数

使用方式

map() 函数将一个函数应用于可迭代对象(如列表、元组等)的所有元素,并返回一个新的可迭代对象。

python 复制代码
# 示例:将列表中的每个数字平方
numbers = [1, 2, 3, 4]
squared = list(map(lambda x: x ** 2, numbers))
print(squared)  # 输出:[1, 4, 9, 16]
优化建议
  • 当需要对大量数据进行简单操作时,map() 比显式的 for 循环更简洁。
  • 如果逻辑较复杂,优先使用 for 循环以提高代码可读性。
  • 可以结合 lambda 表达式实现简洁的匿名函数。

2. filter() 函数

使用方式

filter() 函数用于过滤序列,保留满足条件的元素。

python 复制代码
# 示例:筛选出偶数
numbers = [1, 2, 3, 4, 5]
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers)  # 输出:[2, 4]
优化建议
  • map() 类似,适用于简单的过滤逻辑。
  • 对于复杂的判断逻辑,可以定义单独的函数来替代 lambda 表达式。

3. reduce() 函数

使用方式

reduce() 函数需要从 functools 模块导入,它将一个函数累积地应用到可迭代对象的所有元素上,最终得到一个单一的结果。

python 复制代码
from functools import reduce

# 示例:计算列表所有元素的乘积
numbers = [1, 2, 3, 4]
product = reduce(lambda x, y: x * y, numbers)
print(product)  # 输出:24
优化建议
  • 适合用于累加、累乘等场景。
  • 注意处理空列表的情况,避免引发异常。

4. zip() 函数

使用方式

zip() 函数将多个可迭代对象按位置组合成一个元组的列表。

python 复制代码
# 示例:将两个列表合并为元组列表
names = ["Alice", "Bob"]
scores = [85, 90]
combined = list(zip(names, scores))
print(combined)  # 输出:[('Alice', 85), ('Bob', 90)]
优化建议
  • 在处理多个并行数据时非常有用。
  • 如果输入的长度不一致,结果会以最短的为准。

5. enumerate() 函数

使用方式

enumerate() 函数用于遍历可迭代对象的同时获取索引和值。

python 复制代码
# 示例:打印列表的索引和值
fruits = ["apple", "banana", "cherry"]
for index, fruit in enumerate(fruits):
    print(index, fruit)
优化建议
  • 替代传统的 for i in range(len(...)) 写法,代码更简洁。
  • 提高可读性,尤其在需要索引的场景中。

6. sorted()list.sort() 函数

使用方式

sorted() 返回排序后的新列表,而 list.sort() 会原地修改原始列表。

python 复制代码
# 示例:对列表进行排序
numbers = [3, 1, 4, 2]
sorted_numbers = sorted(numbers)
print(sorted_numbers)  # 输出:[1, 2, 3, 4]

# 原地排序
numbers.sort()
print(numbers)  # 输出:[1, 2, 3, 4]
优化建议
  • 使用 key 参数自定义排序规则(例如按字符串长度排序)。
  • 对大型数据集排序时,注意性能开销。

7. itertools 模块

常用函数
  • itertools.product():笛卡尔积。
  • itertools.permutations():排列。
  • itertools.combinations():组合。
python 复制代码
import itertools

# 示例:生成两个列表的笛卡尔积
a = [1, 2]
b = ['x', 'y']
print(list(itertools.product(a, b)))  # 输出:[(1, 'x'), (1, 'y'), (2, 'x'), (2, 'y')]
优化建议
  • 避免直接生成超大数据集,尽量使用惰性求值特性。
  • 适合解决组合问题,但需要注意时间复杂度。

8. collections 模块

常用类
  • Counter:统计元素出现次数。
  • defaultdict:带默认值的字典。
  • deque:高效的双端队列。
python 复制代码
from collections import Counter

# 示例:统计列表中元素的频率
words = ["apple", "banana", "apple", "orange"]
word_count = Counter(words)
print(word_count)  # 输出:Counter({'apple': 2, 'banana': 1, 'orange': 1})
优化建议
  • 在需要高效统计或数据结构时使用。
  • 熟悉其内部实现原理,避免过度依赖。
相关推荐
猿饵块2 分钟前
python--锁
java·jvm·python
xiaolang_8616_wjl8 分钟前
c++超级细致的基本框架
开发语言·数据结构·c++·算法
星辰落满衣16 分钟前
股票实时交易数据之Python、Java等多种主流语言实例代码演示通过股票数据接口
java·开发语言·python
YJlio43 分钟前
ProcessExplorer_17.09_x64-Chs 新版本升级:我看到的区别与优势(含升级思路与注意点)
人工智能·笔记·学习
毕设源码-钟学长1 小时前
【开题答辩全过程】以 基于java的点餐猫在线个性化点餐系统的设计与实现为例,包含答辩的问题和答案
java·开发语言
-木槿昔年-1 小时前
【米尔-安路MYD-YM90X创意秀】飞龙派学习和PS串口实践
学习·fpga开发
F_D_Z1 小时前
哈希表解Two Sum问题
python·算法·leetcode·哈希表
淼淼7631 小时前
Qt调度 程序
开发语言·c++·windows·qt
智算菩萨1 小时前
【实战】使用讯飞星火API和Python构建一套文本摘要UI程序
开发语言·python·ui
Groundwork Explorer1 小时前
异步框架+POLL混合方案应对ESP32 MPY多任务+TCP多连接
python·单片机