Java大厂面试实录:从Spring Boot到AI微服务架构的深度解析

场景:互联网大厂Java求职者面试

面试官(严肃):小曾,我们今天主要考察Java后端技术栈,结合业务场景提问。先从你熟悉的Spring Boot开始。

小曾(自信):没问题,Spring Boot我熟!

第一轮提问

面试官 :假设你要开发一个音视频直播平台,用户可以实时互动。你会如何设计后端架构?
小曾 :我会用Spring Boot,REST API暴露接口,数据库用MySQL存用户和直播信息,实时互动用WebSocket实现。
面试官 (点头):不错,WebSocket选对技术。但音视频传输需要高并发,你考虑过消息队列吗?
小曾 :呃... Kafka?但我不太清楚具体怎么用...
面试官(微笑):可以考虑用Kafka处理实时弹幕或礼物数据。

面试官 :直播数据量大,如何设计数据库分库分表?
小曾 :分表吧,按日期分表,或者用Redis缓存热点数据...
面试官 :很好,Redis用得对。但微服务如何协同?
小曾 :用Spring Cloud Bus同步Redis,但我不太懂...
面试官(鼓励):继续思考,微服务架构确实需要分布式协同。

面试官 :最后,如果用户量激增,如何保证系统稳定性?
小曾 :降级限流,比如用Hystrix...
面试官 :Resilience4j更现代,你了解吗?
小曾(尴尬):听说过,但没实践过...

第二轮提问

面试官 :假设你要开发一个内容社区,用户可以发布文章和评论。如何设计数据模型和缓存策略?
小曾 :文章用JPA实体类,评论用关联表。缓存用Redis存热点文章,缓存有效期设1小时。
面试官 :评论数据频繁更新,Redis缓存如何更新?
小曾 :用消息队列异步更新... 对,用Kafka!
面试官 (赞许):思路清晰,但Kafka生产者如何保证消息不丢失?
小曾 :序列化方式选JSON,确保幂等性...
面试官:不错,但更推荐Avro或Protobuf序列化。

面试官 :社区需要搜索功能,你会用哪种方案?
小曾 :Elasticsearch吧,全文检索方便...
面试官 :对,但大数据量如何处理?
小曾 (犹豫):用分片和副本?但具体配置不太懂...
面试官:可以研究下Elasticsearch的Cluster Routing。

面试官 :最后,如何设计评论反作弊机制?
小曾 :用Redis存用户行为计数,超过阈值限制发言...
面试官 :结合Spring Security实现更佳,你了解吗?
小曾:Spring Security我学过,但没做过反作弊...

第三轮提问

面试官 :假设你要开发一个AIGC内容生成平台,用户输入关键词生成文章。如何设计AI微服务架构?
小曾 :用Spring AI,接入OpenAI API...
面试官 :很好,但如何处理AI幻觉问题?
小曾 (慌张):用检索增强生成... RAG?但具体实现我不清楚...
面试官:可以研究下Milvus向量数据库,结合语义检索。

面试官 :AI模型需要高并发调用,你会用哪种序列化框架?
小曾 :Gson吧,简单...
面试官 :更推荐Protobuf,性能更好。但如何监控API调用?
小曾 :用Micrometer和Prometheus...
面试官 :对,但日志如何统一?
小曾:用ELK Stack吧,Kibana可视化...

面试官 :最后,AI生成内容需要审核,你会用哪种技术?
小曾 :用定时任务跑规则脚本...
面试官:更推荐用Keycloak结合OAuth2权限控制。

面试官(总结):今天的提问就到这里,回去等通知吧。


问题答案解析

  1. 音视频直播平台

    • 消息队列:Kafka处理实时弹幕,保证高并发下数据不丢失。
    • 数据库分库分表:按日期分表,或用Redis缓存热点数据。
    • 微服务协同:Spring Cloud Bus同步Redis,实现分布式缓存一致性。
    • 系统稳定性:Resilience4j实现熔断限流,防止雪崩。
  2. 内容社区设计

    • 数据模型:JPA实体类,评论表设计外键关联。
    • 缓存更新:Kafka异步更新Redis,结合Redis发布订阅模式。
    • 反作弊机制:Spring Security结合Redis计数器,限制高频操作。
  3. AIGC平台架构

    • AI微服务:Spring AI接入OpenAI API,RAG结合Milvus向量检索。
    • 序列化框架:Protobuf提升性能,减少网络传输开销。
    • 监控与日志:Micrometer+Prometheus监控,ELK Stack统一日志。

小白学习建议

  • 传统技术栈(Spring Boot、Kafka、Redis)要扎实,结合业务场景理解。
  • AI微服务需学习Spring AI、向量数据库(Milvus)和检索增强生成(RAG)。
  • 分布式架构要掌握Resilience4j、Spring Cloud Bus等工具。
  • 反作弊、权限控制等场景可结合Spring Security和OAuth2学习。

希望这篇面试实录能帮你系统学习Java后端技术栈!

相关推荐
midsummer_woo4 小时前
基于springboot+vue+mysql的中药实验管理系统设计与实现(源码+论文+开题报告)
vue.js·spring boot·mysql
cui_hao_nan4 小时前
消息队列总结
kafka·rabbitmq·rocketmq
没有口袋啦5 小时前
Redis 介绍和部署
数据库·redis·缓存
Hello.Reader5 小时前
Go-Redis 入门与实践从连接到可观测,一站式掌握 go-redis v9**
开发语言·redis·golang
007php0075 小时前
使用LNMP一键安装包安装PHP、Nginx、Redis、Swoole、OPcache
java·开发语言·redis·python·nginx·php·swoole
paopaokaka_luck6 小时前
基于SpringBoot+Vue的汽车租赁系统(协同过滤算法、腾讯地图API、支付宝沙盒支付、WebsSocket实时聊天、ECharts图形化分析)
vue.js·spring boot·后端·websocket·算法·汽车·echarts
giao源6 小时前
Spring Boot 整合 Shiro 实现单用户与多用户认证授权指南
java·spring boot·后端·安全性测试
remCoding9 小时前
Java大厂面试实录:从Spring Boot到AI微服务架构的深度拷问
spring boot·spring cloud·kafka·java面试·jakarta ee·ai面试·ai微服务
lifallen9 小时前
KRaft 角色状态设计模式:从状态理解 Raft
java·数据结构·算法·设计模式·kafka·共识算法