【神经网络在MATLAB中是如何实现的?】

文章目录


在MATLAB中实现神经网络非常直观,因为MATLAB提供了强大的工具箱------Neural Network Toolbox。这个工具箱包含了多种类型的神经网络模型和训练算法,使得构建和训练神经网络变得相对简单。

下面是一个详细的教程,展示如何在MATLAB中实现一个简单的前馈神经网络(Feedforward Neural Network),并使用它来进行分类任务。我们将使用经典的Iris数据集作为示例。

1:加载数据

首先,我们需要加载用于训练和测试的数据集。这里我们使用MATLAB自带的iris_dataset

c 复制代码
load iris_dataset;

2:准备数据

接下来,我们需要将数据分为训练集、验证集和测试集。我们可以使用dividerand函数来随机分割数据。

c 复制代码
% 分割索引
[trainInd,valInd,testInd] = dividerand(size(inputs, 2), 0.7, 0.15, 0.15);

% 提取训练、验证和测试数据
trainInputs = inputs(:, trainInd);
trainTargets = targets(:, trainInd);

valInputs = inputs(:, valInd);
valTargets = targets(:, valInd);

testInputs = inputs(:, testInd);
testTargets = targets(:, testInd);

3:创建神经网络

现在我们可以创建一个前馈神经网络。我们将使用tansig激活函数作为隐藏层,并使用softmax激活函数作为输出层,以进行多类分类。

c 复制代码
% 创建一个具有10个隐藏神经元的前馈神经网络
hiddenLayerSize = 10;
net = feedforwardnet(hiddenLayerSize);

% 设置训练参数
net.trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation
net.trainParam.epochs = 100; % 最大训练次数

4:配置神经网络

我们需要为神经网络配置训练、验证和测试数据。

c 复制代码
% 配置网络输入和目标
net.divideParam.trainInd = trainInd;
net.divideParam.valInd = valInd;
net.divideParam.testInd = testInd;

% 将数据分配给网络
[net, tr] = train(net, trainInputs, trainTargets, valInputs, valTargets, testInputs, testTargets);

5:测试神经网络

训练完成后,我们可以使用测试数据来评估神经网络的性能。

c 复制代码
% 测试网络
testOutputs = net(testInputs);
performance = perform(net, testTargets, testOutputs);
disp(['Test Performance: ', num2str(performance)]);

6:可视化结果

最后,我们可以绘制一些图表来查看神经网络的学习过程和最终性能。

c 复制代码
% 绘制训练、验证和测试误差曲线
figure;
plotperform(tr);

% 绘制回归图
figure;
plotregression(testTargets, testOutputs);

% 绘制混淆矩阵
figure;
plotconfusion(testTargets, testOutputs);

完整代码

以下是上述所有步骤整合在一起的完整代码:

这段代码展示了如何在MATLAB中从头开始创建、训练和测试一个简单的前馈神经网络。你可以根据需要调整网络结构、训练参数和数据集,以适应不同的应用场景。

相关推荐
楚潸潸3 分钟前
交叉编译opencv(Cpp)于arm64架构开发板上
人工智能·opencv·计算机视觉·嵌入式
无规则ai28 分钟前
OpenCV的应用:简单的人脸识别和检测
人工智能·opencv·计算机视觉
HEY_FLYINGPIG30 分钟前
【langchain】3分钟构建一个上下文聊天机器人
jvm·人工智能·python·langchain·机器人
lxmyzzs35 分钟前
【打怪升级 - 01】保姆级机器视觉入门指南:硬件选型 + CUDA/cuDNN/Miniconda/PyTorch 安装全流程(附版本匹配秘籍)
python·深度学习·神经网络·目标检测·计算机视觉·目标跟踪
易知微EasyV数据可视化39 分钟前
EasyMan 数字人服务全面焕新,交互型AI数字人助推孪生体验全新升级
人工智能·交互·数字孪生·数字人
飞哥数智坊43 分钟前
卷死PPT设计师!字节「扣子空间」4分钟全自动出稿
人工智能
EndingCoder1 小时前
未来趋势:LeafletJS 与 Web3/AI 的融合
前端·人工智能·前端框架·web3·动态规划·leafletjs·交互式地图
香蕉可乐荷包蛋1 小时前
OpenCV学习(二)-二维、三维识别
人工智能·opencv·学习
云卓SKYDROID1 小时前
无人机AI制导模块技术分析
人工智能·无人机·科普·高科技·云卓科技
幻风_huanfeng3 小时前
人工智能之数学基础:概率论和数理统计在机器学习的地位
人工智能·神经网络·线性代数·机器学习·概率论