【神经网络在MATLAB中是如何实现的?】

文章目录


在MATLAB中实现神经网络非常直观,因为MATLAB提供了强大的工具箱------Neural Network Toolbox。这个工具箱包含了多种类型的神经网络模型和训练算法,使得构建和训练神经网络变得相对简单。

下面是一个详细的教程,展示如何在MATLAB中实现一个简单的前馈神经网络(Feedforward Neural Network),并使用它来进行分类任务。我们将使用经典的Iris数据集作为示例。

1:加载数据

首先,我们需要加载用于训练和测试的数据集。这里我们使用MATLAB自带的iris_dataset

c 复制代码
load iris_dataset;

2:准备数据

接下来,我们需要将数据分为训练集、验证集和测试集。我们可以使用dividerand函数来随机分割数据。

c 复制代码
% 分割索引
[trainInd,valInd,testInd] = dividerand(size(inputs, 2), 0.7, 0.15, 0.15);

% 提取训练、验证和测试数据
trainInputs = inputs(:, trainInd);
trainTargets = targets(:, trainInd);

valInputs = inputs(:, valInd);
valTargets = targets(:, valInd);

testInputs = inputs(:, testInd);
testTargets = targets(:, testInd);

3:创建神经网络

现在我们可以创建一个前馈神经网络。我们将使用tansig激活函数作为隐藏层,并使用softmax激活函数作为输出层,以进行多类分类。

c 复制代码
% 创建一个具有10个隐藏神经元的前馈神经网络
hiddenLayerSize = 10;
net = feedforwardnet(hiddenLayerSize);

% 设置训练参数
net.trainFcn = 'trainlm'; % Levenberg-Marquardt backpropagation
net.trainParam.epochs = 100; % 最大训练次数

4:配置神经网络

我们需要为神经网络配置训练、验证和测试数据。

c 复制代码
% 配置网络输入和目标
net.divideParam.trainInd = trainInd;
net.divideParam.valInd = valInd;
net.divideParam.testInd = testInd;

% 将数据分配给网络
[net, tr] = train(net, trainInputs, trainTargets, valInputs, valTargets, testInputs, testTargets);

5:测试神经网络

训练完成后,我们可以使用测试数据来评估神经网络的性能。

c 复制代码
% 测试网络
testOutputs = net(testInputs);
performance = perform(net, testTargets, testOutputs);
disp(['Test Performance: ', num2str(performance)]);

6:可视化结果

最后,我们可以绘制一些图表来查看神经网络的学习过程和最终性能。

c 复制代码
% 绘制训练、验证和测试误差曲线
figure;
plotperform(tr);

% 绘制回归图
figure;
plotregression(testTargets, testOutputs);

% 绘制混淆矩阵
figure;
plotconfusion(testTargets, testOutputs);

完整代码

以下是上述所有步骤整合在一起的完整代码:

这段代码展示了如何在MATLAB中从头开始创建、训练和测试一个简单的前馈神经网络。你可以根据需要调整网络结构、训练参数和数据集,以适应不同的应用场景。

相关推荐
风静如云9 分钟前
Claude Code:进入dash模式
人工智能
TM1Club15 分钟前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
陈天伟教授18 分钟前
人工智能应用-机器听觉:15. 声纹识别的应用
人工智能·神经网络·机器学习·语音识别
zhang1338308907519 分钟前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
板面华仔42 分钟前
机器学习入门(三)——决策树(Decision Tree)
人工智能·决策树·机器学习
GAOJ_K1 小时前
滚珠花键的无预压、间隙调整与过盈配合“场景适配型”
人工智能·科技·机器人·自动化·制造
ai_xiaogui1 小时前
【开源探索】Panelai:重新定义AI服务器管理面板,助力团队私有化算力部署与模型运维
人工智能·开源·私有化部署·docker容器化·panelai·ai服务器管理面板·comfyui集群管理
源于花海1 小时前
迁移学习的前沿知识(AI与人类经验结合、传递式、终身、在线、强化、可解释性等)
人工智能·机器学习·迁移学习·迁移学习前沿
然哥依旧1 小时前
【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)
算法·支持向量机·matlab·cnn
king of code porter2 小时前
百宝箱企业版搭建智能体应用-平台概述
人工智能·大模型·智能体